配电网参数受天气条件和负载条件等因素影响会发生变化。由于传感装置安装有限、数据延时传输等因素,无法实时获得配电网准确参数,进而给传统故障定位方法的精度带来影响。针对以上问题,通过建立配电网数字孪生模型,基于配电网数字孪生...配电网参数受天气条件和负载条件等因素影响会发生变化。由于传感装置安装有限、数据延时传输等因素,无法实时获得配电网准确参数,进而给传统故障定位方法的精度带来影响。针对以上问题,通过建立配电网数字孪生模型,基于配电网数字孪生模型的参数自修正技术,提出了一种定位模型随参数变化动态校正的配电网故障定位方法。同时,搭建了基于数字孪生服务器和实时数字仿真系统(real time digital system, RTDS)的数字孪生平台,实现了配电网实时的物理模型和数字孪生模型的同步运行。在算例仿真中,利用该数字孪生平台,验证了基于数字孪生技术的配电网故障定法方法。结果表明,该方法可在各类系统运行条件下实时修正配电网参数,显著提高配电网故障定位的速度和精度。展开更多
航空发动机叶尖间隙是监控其运行状态的有效参数,现有间隙测量方法很难满足超高转速下间隙距离的奈奎斯特采样率,因此无法有效提取精确的叶尖间隙值。本文基于压缩感知原理,针对间隙距离数据特征提出一种采用K-SVD(K-singular value dec...航空发动机叶尖间隙是监控其运行状态的有效参数,现有间隙测量方法很难满足超高转速下间隙距离的奈奎斯特采样率,因此无法有效提取精确的叶尖间隙值。本文基于压缩感知原理,针对间隙距离数据特征提出一种采用K-SVD(K-singular value decomposition)字典训练稀疏基的数据重构方法,该方法首先构建出K-SVD字典稀疏基对数据进行稀疏化表示,然后使用m序列高斯随机矩阵对数据进行压缩观测,最后基于压缩欠采样观测值使用正交匹配追踪算法对数据进行重构,进而精确提取叶尖间隙值。实验结果表明,在欠采样条件下间隙距离数据可精确恢复重构,与高采样率下的间隙数据相比,重构误差不超过0.02 mm。展开更多
正交匹配追踪反卷积声源识别算法(orthogonal matching pursuit deconvolution approach for the mapping of acoustic sources, OMP-DAMAS)具有极高的计算效率、空间分辨率和重构精度,被广泛应用声源识别领域。但在实际的工程运用中,...正交匹配追踪反卷积声源识别算法(orthogonal matching pursuit deconvolution approach for the mapping of acoustic sources, OMP-DAMAS)具有极高的计算效率、空间分辨率和重构精度,被广泛应用声源识别领域。但在实际的工程运用中,无法满足提前确定声源数目的条件,可能造成识别结果不准确。因此提出了一种分段取阈值的OMP-DAMAS算法,在声源稀疏度未知的情况下,通过对内积和最小二乘解取阈值将伪声源和旁瓣对应的列序号从原子支撑集中删除,直接精确的识别出真实声源的位置。仿真和试验结果表明了所提算法与传统的延时求和算法相比,可以明显的减小主瓣宽度,提高空间分辨率,同样能达到OMP-DAMAS算法的重构效果,对噪声具有较好的鲁棒性,且具有极高的识别稳定性。展开更多
多视角多频带逆合成孔径雷达(inverse synthetic aperture radar,ISAR)融合成像技术克服了单雷达成像分辨率受发射带宽和观测视角的限制,是提高ISAR成像的二维分辨率的新手段。在宽带小角度观测条件下,针对目标散射系数随频率变化的情况...多视角多频带逆合成孔径雷达(inverse synthetic aperture radar,ISAR)融合成像技术克服了单雷达成像分辨率受发射带宽和观测视角的限制,是提高ISAR成像的二维分辨率的新手段。在宽带小角度观测条件下,针对目标散射系数随频率变化的情况,提出一种基于几何绕射理论(geometrical theory of diffraction,GTD)模型的多视角多频带ISAR融合成像方法。首先,以GTD模型为基础建立ISAR成像回波模型;然后,将多视角多频带ISAR融合成像问题转化为信号稀疏重构问题,并采用正交匹配追踪算法求解,在保证融合成像质量的同时提高了的成像效率;最后,利用仿真实验验证了所提方法的有效性。展开更多
The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is propos...The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.展开更多
A space-based bistatic radar system composed of two space-based radars as the transmitter and the receiver respectively has a wider surveillance region and a better early warning capability for high-speed targets,and ...A space-based bistatic radar system composed of two space-based radars as the transmitter and the receiver respectively has a wider surveillance region and a better early warning capability for high-speed targets,and it can detect focused space targets more flexibly than the monostatic radar system or the ground-based radar system.However,the target echo signal is more difficult to process due to the high-speed motion of both space-based radars and space targets.To be specific,it will encounter the problems of Range Cell Migration(RCM)and Doppler Frequency Migration(DFM),which degrade the long-time coherent integration performance for target detection and localization inevitably.To solve this problem,a novel target detection method based on an improved Gram Schmidt(GS)-orthogonalization Orthogonal Matching Pursuit(OMP)algorithm is proposed in this paper.First,the echo model for bistatic space-based radar is constructed and the conditions for RCM and DFM are analyzed.Then,the proposed GS-orthogonalization OMP method is applied to estimate the equivalent motion parameters of space targets.Thereafter,the RCM and DFM are corrected by the compensation function correlated with the estimated motion parameters.Finally,coherent integration can be achieved by performing the Fast Fourier Transform(FFT)operation along the slow time direction on compensated echo signal.Numerical simulations and real raw data results validate that the proposed GS-orthogonalization OMP algorithm achieves better motion parameter estimation performance and higher detection probability for space targets detection.展开更多
文摘配电网参数受天气条件和负载条件等因素影响会发生变化。由于传感装置安装有限、数据延时传输等因素,无法实时获得配电网准确参数,进而给传统故障定位方法的精度带来影响。针对以上问题,通过建立配电网数字孪生模型,基于配电网数字孪生模型的参数自修正技术,提出了一种定位模型随参数变化动态校正的配电网故障定位方法。同时,搭建了基于数字孪生服务器和实时数字仿真系统(real time digital system, RTDS)的数字孪生平台,实现了配电网实时的物理模型和数字孪生模型的同步运行。在算例仿真中,利用该数字孪生平台,验证了基于数字孪生技术的配电网故障定法方法。结果表明,该方法可在各类系统运行条件下实时修正配电网参数,显著提高配电网故障定位的速度和精度。
文摘航空发动机叶尖间隙是监控其运行状态的有效参数,现有间隙测量方法很难满足超高转速下间隙距离的奈奎斯特采样率,因此无法有效提取精确的叶尖间隙值。本文基于压缩感知原理,针对间隙距离数据特征提出一种采用K-SVD(K-singular value decomposition)字典训练稀疏基的数据重构方法,该方法首先构建出K-SVD字典稀疏基对数据进行稀疏化表示,然后使用m序列高斯随机矩阵对数据进行压缩观测,最后基于压缩欠采样观测值使用正交匹配追踪算法对数据进行重构,进而精确提取叶尖间隙值。实验结果表明,在欠采样条件下间隙距离数据可精确恢复重构,与高采样率下的间隙数据相比,重构误差不超过0.02 mm。
文摘正交匹配追踪反卷积声源识别算法(orthogonal matching pursuit deconvolution approach for the mapping of acoustic sources, OMP-DAMAS)具有极高的计算效率、空间分辨率和重构精度,被广泛应用声源识别领域。但在实际的工程运用中,无法满足提前确定声源数目的条件,可能造成识别结果不准确。因此提出了一种分段取阈值的OMP-DAMAS算法,在声源稀疏度未知的情况下,通过对内积和最小二乘解取阈值将伪声源和旁瓣对应的列序号从原子支撑集中删除,直接精确的识别出真实声源的位置。仿真和试验结果表明了所提算法与传统的延时求和算法相比,可以明显的减小主瓣宽度,提高空间分辨率,同样能达到OMP-DAMAS算法的重构效果,对噪声具有较好的鲁棒性,且具有极高的识别稳定性。
文摘多视角多频带逆合成孔径雷达(inverse synthetic aperture radar,ISAR)融合成像技术克服了单雷达成像分辨率受发射带宽和观测视角的限制,是提高ISAR成像的二维分辨率的新手段。在宽带小角度观测条件下,针对目标散射系数随频率变化的情况,提出一种基于几何绕射理论(geometrical theory of diffraction,GTD)模型的多视角多频带ISAR融合成像方法。首先,以GTD模型为基础建立ISAR成像回波模型;然后,将多视角多频带ISAR融合成像问题转化为信号稀疏重构问题,并采用正交匹配追踪算法求解,在保证融合成像质量的同时提高了的成像效率;最后,利用仿真实验验证了所提方法的有效性。
文摘The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.
文摘A space-based bistatic radar system composed of two space-based radars as the transmitter and the receiver respectively has a wider surveillance region and a better early warning capability for high-speed targets,and it can detect focused space targets more flexibly than the monostatic radar system or the ground-based radar system.However,the target echo signal is more difficult to process due to the high-speed motion of both space-based radars and space targets.To be specific,it will encounter the problems of Range Cell Migration(RCM)and Doppler Frequency Migration(DFM),which degrade the long-time coherent integration performance for target detection and localization inevitably.To solve this problem,a novel target detection method based on an improved Gram Schmidt(GS)-orthogonalization Orthogonal Matching Pursuit(OMP)algorithm is proposed in this paper.First,the echo model for bistatic space-based radar is constructed and the conditions for RCM and DFM are analyzed.Then,the proposed GS-orthogonalization OMP method is applied to estimate the equivalent motion parameters of space targets.Thereafter,the RCM and DFM are corrected by the compensation function correlated with the estimated motion parameters.Finally,coherent integration can be achieved by performing the Fast Fourier Transform(FFT)operation along the slow time direction on compensated echo signal.Numerical simulations and real raw data results validate that the proposed GS-orthogonalization OMP algorithm achieves better motion parameter estimation performance and higher detection probability for space targets detection.