Objective: Pedestrian safety is considered as one of the greatest concerns, especially for developing countries. In the year of 2015, about 48% pedestrian accidents with 56% fatalities occurred at mid-blocks in Beijin...Objective: Pedestrian safety is considered as one of the greatest concerns, especially for developing countries. In the year of 2015, about 48% pedestrian accidents with 56% fatalities occurred at mid-blocks in Beijing. Since the high frequency and fatality risk, this study focused on pedestrian accidents taking place at mid-blocks and aimed at identifying significant factors. Methods: Based on total 10,948 crash records, a binary logit model was established to explore the impact of various factors on the probability of pedestrian’s death. Furthermore, first-degree interaction effects were introduced into the basic model. The Hosmer-Lemeshow goodness-of-fit test was used to assess the model performance. Odds ratio was calculated for categorical variables to compare significant accident conditions with the conference level. Variables within consideration in this study included weather, area type, road type, speed limit, pedestrian location, lighting condition, vehicle type, pedestrian gender and pedestrian age. Results: The calibration results of the model show that the increased fatality chances of an accident at mid-blocks are associated with normal weather, rural area, two-way divided road, crossing elsewhere in carriageway, darkness (especially for no street lighting), light vehicle, large vehicle and male pedestrian. With road speed limit increasing by 10 km/h, the probability of death accordingly increases by 46%. Older victims have higher chances of being killed in a crash. Moreover, three interaction effects are found significant: rural area and two-way divided, rural area and crossing elsewhere as well as speed limit and pedestrian age. Conclusions: This study has analyzed police accident data and identified factors significant to the death probability of pedestrians in accidents occurred at mid-blocks. Recommendations and improving measures were proposed correspondingly. Behaviors of different road users at mid-blocks should be taken into account in the future research.展开更多
Flood catastrophe risk assessment is imperative for the steady development of agriculture under the context of global climate change,and meanwhile,it is an urgent scientific issue need to be solved in agricultural ris...Flood catastrophe risk assessment is imperative for the steady development of agriculture under the context of global climate change,and meanwhile,it is an urgent scientific issue need to be solved in agricultural risk assessment discipline.This paper developed the methodology of flood catastrophe risk assessment,which can be shown as the standard process of crop loss calculation,Monte Carlo simulation,the generalized extreme value distribution(GEV) fitting,and risk evaluation.Data on crop loss were collected based on hectares covered by natural disasters,hectares affected by natural disasters,and hectares destroyed by natural disasters using the standard equation.Monte Carlo simulation based on appropriate distribution was used to expand sample size to overcome the insufficiency of crop loss data.Block maxima model(BMM) approach based on the extreme value theory was for modeling the generalized extreme value distribution(GEV) of flood catastrophe loss,and then flood catastrophe risk at the provincial scale in China was calculated.The Type III Extreme distribution(Weibull) has a weighted advantage of modeling flood catastrophe risk for grain production.The impact of flood catastrophe to grain production in China was significantly serious,and high or very high risk of flood catastrophe mainly concentrates on the central and eastern regions of China.Given the scenario of suffering once-in-a-century flood disaster,for majority of the major-producing provinces,the probability of 10% reduction of grain output is more than 90%.Especially,the probabilities of more than 15% decline in grain production reach up to 99.99,99.86,99.69,and 91.60% respectively in Anhui,Jilin,Liaoning,and Heilongjiang.Flood catastrophe assessment can provide multifaceted information about flood catastrophe risk that can help to guide management of flood catastrophe.展开更多
In the Wenchuan Earthquake area,many co-seismic landslides formed blocking-dams in debris flow channels. This blocking and bursting of landslide dams amplifies the debris flow scale and results in severe catastrophes....In the Wenchuan Earthquake area,many co-seismic landslides formed blocking-dams in debris flow channels. This blocking and bursting of landslide dams amplifies the debris flow scale and results in severe catastrophes. The catastrophic debris flow that occurred in Qipan gully(Wenchuan,Southwest China) on July 11,2013 was caused by intense rainfall and upstream cascading bursting of landslide dams. To gain an understanding of the processes of dam bursting and subsequent debris flow scale amplification effect,we attempted to estimate the bursting debris flow peak discharges along the main gully and analyzed the scale amplification process. The results showed that the antecedent and triggering rainfalls for 11 July debris flow event were 88.0 mm and 21.6 mm,respectively. The event highlights the fact that lower rainfall intensity can trigger debris flows after the earthquake. Calculations of the debris flow peak discharge showed that the peak discharges after the dams-bursting were 1.17–1.69 times greater than the upstream peak discharge. The peak discharge at the gully outlet reached 2553 m^3/s which was amplified by 4.76 times in comparison with the initial peak discharge in the upstream. To mitigate debris flow disasters,a new drainage channel with a trapezoidal V-shaped cross section was proposed. The characteristic lengths(h1 and h2) under optimal hydraulic conditions were calculated as 4.50 m and 0.90 m,respectively.展开更多
文摘Objective: Pedestrian safety is considered as one of the greatest concerns, especially for developing countries. In the year of 2015, about 48% pedestrian accidents with 56% fatalities occurred at mid-blocks in Beijing. Since the high frequency and fatality risk, this study focused on pedestrian accidents taking place at mid-blocks and aimed at identifying significant factors. Methods: Based on total 10,948 crash records, a binary logit model was established to explore the impact of various factors on the probability of pedestrian’s death. Furthermore, first-degree interaction effects were introduced into the basic model. The Hosmer-Lemeshow goodness-of-fit test was used to assess the model performance. Odds ratio was calculated for categorical variables to compare significant accident conditions with the conference level. Variables within consideration in this study included weather, area type, road type, speed limit, pedestrian location, lighting condition, vehicle type, pedestrian gender and pedestrian age. Results: The calibration results of the model show that the increased fatality chances of an accident at mid-blocks are associated with normal weather, rural area, two-way divided road, crossing elsewhere in carriageway, darkness (especially for no street lighting), light vehicle, large vehicle and male pedestrian. With road speed limit increasing by 10 km/h, the probability of death accordingly increases by 46%. Older victims have higher chances of being killed in a crash. Moreover, three interaction effects are found significant: rural area and two-way divided, rural area and crossing elsewhere as well as speed limit and pedestrian age. Conclusions: This study has analyzed police accident data and identified factors significant to the death probability of pedestrians in accidents occurred at mid-blocks. Recommendations and improving measures were proposed correspondingly. Behaviors of different road users at mid-blocks should be taken into account in the future research.
基金jointly funded by the National Natural Science Foundation of China(41201551)the Key Technology R&D Program of China(2012BAH20B04-2)
文摘Flood catastrophe risk assessment is imperative for the steady development of agriculture under the context of global climate change,and meanwhile,it is an urgent scientific issue need to be solved in agricultural risk assessment discipline.This paper developed the methodology of flood catastrophe risk assessment,which can be shown as the standard process of crop loss calculation,Monte Carlo simulation,the generalized extreme value distribution(GEV) fitting,and risk evaluation.Data on crop loss were collected based on hectares covered by natural disasters,hectares affected by natural disasters,and hectares destroyed by natural disasters using the standard equation.Monte Carlo simulation based on appropriate distribution was used to expand sample size to overcome the insufficiency of crop loss data.Block maxima model(BMM) approach based on the extreme value theory was for modeling the generalized extreme value distribution(GEV) of flood catastrophe loss,and then flood catastrophe risk at the provincial scale in China was calculated.The Type III Extreme distribution(Weibull) has a weighted advantage of modeling flood catastrophe risk for grain production.The impact of flood catastrophe to grain production in China was significantly serious,and high or very high risk of flood catastrophe mainly concentrates on the central and eastern regions of China.Given the scenario of suffering once-in-a-century flood disaster,for majority of the major-producing provinces,the probability of 10% reduction of grain output is more than 90%.Especially,the probabilities of more than 15% decline in grain production reach up to 99.99,99.86,99.69,and 91.60% respectively in Anhui,Jilin,Liaoning,and Heilongjiang.Flood catastrophe assessment can provide multifaceted information about flood catastrophe risk that can help to guide management of flood catastrophe.
基金financially supported by the National Natural Science Foundation of China (Grant No.41572302)the Funds for Creative Research Groups of China (Grant No.41521002)
文摘In the Wenchuan Earthquake area,many co-seismic landslides formed blocking-dams in debris flow channels. This blocking and bursting of landslide dams amplifies the debris flow scale and results in severe catastrophes. The catastrophic debris flow that occurred in Qipan gully(Wenchuan,Southwest China) on July 11,2013 was caused by intense rainfall and upstream cascading bursting of landslide dams. To gain an understanding of the processes of dam bursting and subsequent debris flow scale amplification effect,we attempted to estimate the bursting debris flow peak discharges along the main gully and analyzed the scale amplification process. The results showed that the antecedent and triggering rainfalls for 11 July debris flow event were 88.0 mm and 21.6 mm,respectively. The event highlights the fact that lower rainfall intensity can trigger debris flows after the earthquake. Calculations of the debris flow peak discharge showed that the peak discharges after the dams-bursting were 1.17–1.69 times greater than the upstream peak discharge. The peak discharge at the gully outlet reached 2553 m^3/s which was amplified by 4.76 times in comparison with the initial peak discharge in the upstream. To mitigate debris flow disasters,a new drainage channel with a trapezoidal V-shaped cross section was proposed. The characteristic lengths(h1 and h2) under optimal hydraulic conditions were calculated as 4.50 m and 0.90 m,respectively.