Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting...Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting has been established only by almost orthogonality estimates.In this paper,we mainly establish the boundedness on weighted multi-parameter local Hardy spaces via atomic decomposition.展开更多
In this article,we investigate the(big) Hankel operator H_(f) on the Hardy spaces of bounded strongly pseudoconvex domains Ω in C^(n).We observe that H_(f ) is bounded on H~p(Ω)(1 <p <∞) if f belongs to BMO a...In this article,we investigate the(big) Hankel operator H_(f) on the Hardy spaces of bounded strongly pseudoconvex domains Ω in C^(n).We observe that H_(f ) is bounded on H~p(Ω)(1 <p <∞) if f belongs to BMO and we obtain some characterizations for Hf on H^(2)(Ω) of other pseudoconvex domains.In these arguments,Amar's L^(p)-estimations and Berndtsson's L^(2)-estimations for solutions of the ■_(b)-equation play a crucial role.In addition,we solve Gleason's problem for Hardy spaces H^(p)(Ω)(1 ≤p≤∞) of bounded strongly pseudoconvex domains.展开更多
Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying som...Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying some mild assumptions.Let HX,L(ℝ^(n))be the Hardy space associated with both X and L,which is defined by the Lusin area function related to the semigroup generated by L.In this article,the authors establish various maximal function characterizations of the Hardy space HX,L(ℝ^(n))and then apply these characterizations to obtain the solvability of the related Cauchy problem.These results have a wide range of generality and,in particular,the specific spaces X to which these results can be applied include the weighted space,the variable space,the mixed-norm space,the Orlicz space,the Orlicz-slice space,and the Morrey space.Moreover,the obtained maximal function characterizations of the mixed-norm Hardy space,the Orlicz-slice Hardy space,and the Morrey-Hardy space associated with L are completely new.展开更多
In this paper, several new results on the boundedness of parammetric Marcinkiewicz integrals on the weighted Hardy spaces and the weak weighted Hardy spaces are established.
Let w be a Muckenhoupt weight and Hwp (JRn) be the weighted Hardy space. In this paper, by using the atomic decomposition of Hwp(Rn), we will show that the Bochner-Riesz operators TRδ are bounded from Hwp(Rn) t...Let w be a Muckenhoupt weight and Hwp (JRn) be the weighted Hardy space. In this paper, by using the atomic decomposition of Hwp(Rn), we will show that the Bochner-Riesz operators TRδ are bounded from Hwp(Rn) to the weighted weak Hardy spaces WHwp (Rn) for 0 〈 p 〈 1 and δ = n/p- (n + 1)/2. This result is new even in the unweighted case.展开更多
In this article, several weak Hardy spaces of Banach-space-valued martingales are introduced, some atomic decomposition theorems for them are established and their duals are investigated. The results closely depend on...In this article, several weak Hardy spaces of Banach-space-valued martingales are introduced, some atomic decomposition theorems for them are established and their duals are investigated. The results closely depend on the geometrical properties of the Banach space in which the martingales take values.展开更多
The atomic decompositions of weak Hardy spaces of Banach-space-valued martingales are given. With the help of the atomic decompositions, some inequalities for B-valued martingales are established in the case 0〈r≤1. ...The atomic decompositions of weak Hardy spaces of Banach-space-valued martingales are given. With the help of the atomic decompositions, some inequalities for B-valued martingales are established in the case 0〈r≤1. Here the results are connected closely with the p-uniform smoothness and q-uniform convexity of Banach spaces which the martingales take values in.展开更多
It provides the boundary proof of Marcnkiewicz integral μ Ω(f)(x) on Herz_type Hardy spaces. That is: if n(1-1q)≤α【n(1-1q)+β then μ Ω(f)(x) is boundendess from H K· α,p q(R n) to ...It provides the boundary proof of Marcnkiewicz integral μ Ω(f)(x) on Herz_type Hardy spaces. That is: if n(1-1q)≤α【n(1-1q)+β then μ Ω(f)(x) is boundendess from H K· α,p q(R n) to K· α,p q(R n); if α=n(1-1q)+β then μ Ω(f)(x) is boundedness from H K· α,p q(R n) to W K· α,p q(R n).展开更多
Let Tμ,b,m be the higher order commutator generated by a generalized fractional integral operator Tμ and a BMO function b. In this paper, we will study the boundedness of Tμ,b,m on classical Hardy spaces and Herz-t...Let Tμ,b,m be the higher order commutator generated by a generalized fractional integral operator Tμ and a BMO function b. In this paper, we will study the boundedness of Tμ,b,m on classical Hardy spaces and Herz-type Hardy spaces.展开更多
Multi-parameter mixed Hardy space Hpmix is introduced by a new discrete Calderon's identity.As an application,we obtain the Hmix^p→ L^p(R^n1+n2)boundedness of operators in the mixed Journe’s class.
Let A be a symmetric expansive matrix and H^p(R^n) be the anisotropic Hardy space associated with A. For a function m in L∞(R^n), an appropriately chosen function η in Cc^∞(R^n) and j ∈ Z define mj(ξ) = m...Let A be a symmetric expansive matrix and H^p(R^n) be the anisotropic Hardy space associated with A. For a function m in L∞(R^n), an appropriately chosen function η in Cc^∞(R^n) and j ∈ Z define mj(ξ) = m(A^jξ)η(ξ). The authors show that if 0 〈 p 〈 1 and mj belongs to the anisotropic nonhomogeneous Herz space K1^1/P^-1,p(R^n), then m is a Fourier multiplier from H^p(R^n) to L^V(R^n). For p = 1, a similar result is obtained if the space K1^0.1(R^n) is replaced by a slightly smaller space K(w). Moreover, the authors show that if 0 〈 p 〈 1 and if the sequence {(mj)^v} belongs to a certain mixednorm space, depending on p, then m is also a Fourier multiplier from H^p(R^n) to L^v(R^n).展开更多
A new maximal function is introduced in the dual spaces of test function spaces on spaces of homogeneous type. Using this maximal function, we get new characterization of atomic H^p spaces.
Analytic Hardy and BMO spaces on the quantum torus are introduced. Some basic properties of these spaces are presented. In particular, the associated H 1-BMO duality theorem is proved. Finally, we discuss some possibl...Analytic Hardy and BMO spaces on the quantum torus are introduced. Some basic properties of these spaces are presented. In particular, the associated H 1-BMO duality theorem is proved. Finally, we discuss some possible extensions of the obtained results.展开更多
In this paper, we study the boundedness of higher order commutators of gen- eralized fractional integral operators on weighted Lp spaces and Herz-type Hardy spaces.
Let (.the Muckenhoupt class). In this paper, the author introduce the weighted Herz-type Hardy spaces (w2) and present their atomic decomposition. Using the atomic decomposition, the author find out their dual spaces,...Let (.the Muckenhoupt class). In this paper, the author introduce the weighted Herz-type Hardy spaces (w2) and present their atomic decomposition. Using the atomic decomposition, the author find out their dual spaces, establish the boundedness on these spaces of the pseudo-differential operators of order zero and show that , the class of C(Rn)-functions with compactly support, is dense in and there is a subsequence, which converges in distrbutional sense to some distribution of , of any bounded sequence in In addition, the author also set up the boundedness of some non-linear quantities in compensated compactness.展开更多
It is proved that the maximal operator of the Marczinkiewicz-Fejér meams of a double Walsh-Fourier series is bounded from the two-dimensional dyadic martingale Hardy space H p to L p (2/3<p<∞) and is of we...It is proved that the maximal operator of the Marczinkiewicz-Fejér meams of a double Walsh-Fourier series is bounded from the two-dimensional dyadic martingale Hardy space H p to L p (2/3<p<∞) and is of weak type (1,1). As a consequence we obtain that the Marczinkiewicz-Fejér means of a function f∈L 1 converge a.e. to the function in question. Moreover, we prove that these means are uniformly bounded on H p whenever 2/3<p<∞. Thus, in case f∈H p , the Marczinkiewicz-Fejér means conv f in H p norm. The same results are proved for the conjugate means, too.展开更多
Applying the decomposition theorems in [1] and [2] , we obtain the boundedness theorem of Calderbn-Zygmund operator of type 6 on the Hardy spaces of weighted Herz type and establish interpolation theorem of linear ope...Applying the decomposition theorems in [1] and [2] , we obtain the boundedness theorem of Calderbn-Zygmund operator of type 6 on the Hardy spaces of weighted Herz type and establish interpolation theorem of linear operators on the weighted Herz spaces. -展开更多
In this paper, we give the four equivalent characterizations for the weighted local hardy spaces on Lipschitz domains. Also, we give their application for the harmonic function defined in bounded Lipschitz domains.
文摘Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting has been established only by almost orthogonality estimates.In this paper,we mainly establish the boundedness on weighted multi-parameter local Hardy spaces via atomic decomposition.
基金supported by the National Natural Science Foundation of China(12271101)。
文摘In this article,we investigate the(big) Hankel operator H_(f) on the Hardy spaces of bounded strongly pseudoconvex domains Ω in C^(n).We observe that H_(f ) is bounded on H~p(Ω)(1 <p <∞) if f belongs to BMO and we obtain some characterizations for Hf on H^(2)(Ω) of other pseudoconvex domains.In these arguments,Amar's L^(p)-estimations and Berndtsson's L^(2)-estimations for solutions of the ■_(b)-equation play a crucial role.In addition,we solve Gleason's problem for Hardy spaces H^(p)(Ω)(1 ≤p≤∞) of bounded strongly pseudoconvex domains.
基金supported by the National Key Research and Development Program of China(2020YFA0712900)the National Natural Science Foundation of China(12371093,12071197,12122102 and 12071431)+2 种基金the Key Project of Gansu Provincial National Science Foundation(23JRRA1022)the Fundamental Research Funds for the Central Universities(2233300008 and lzujbky-2021-ey18)the Innovative Groups of Basic Research in Gansu Province(22JR5RA391).
文摘Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying some mild assumptions.Let HX,L(ℝ^(n))be the Hardy space associated with both X and L,which is defined by the Lusin area function related to the semigroup generated by L.In this article,the authors establish various maximal function characterizations of the Hardy space HX,L(ℝ^(n))and then apply these characterizations to obtain the solvability of the related Cauchy problem.These results have a wide range of generality and,in particular,the specific spaces X to which these results can be applied include the weighted space,the variable space,the mixed-norm space,the Orlicz space,the Orlicz-slice space,and the Morrey space.Moreover,the obtained maximal function characterizations of the mixed-norm Hardy space,the Orlicz-slice Hardy space,and the Morrey-Hardy space associated with L are completely new.
文摘The paper is given the interpolation of operators between weighted Hardy spaces and weighted L p spaces when w∈A 1 by Calderon Zygmund decomposition.
基金Supported by the National Natural Science Foundation of China(11071065 and 11171306)
文摘In this paper, several new results on the boundedness of parammetric Marcinkiewicz integrals on the weighted Hardy spaces and the weak weighted Hardy spaces are established.
文摘Let w be a Muckenhoupt weight and Hwp (JRn) be the weighted Hardy space. In this paper, by using the atomic decomposition of Hwp(Rn), we will show that the Bochner-Riesz operators TRδ are bounded from Hwp(Rn) to the weighted weak Hardy spaces WHwp (Rn) for 0 〈 p 〈 1 and δ = n/p- (n + 1)/2. This result is new even in the unweighted case.
基金Supported by the National Natural Foundation of China(10671147)
文摘In this article, several weak Hardy spaces of Banach-space-valued martingales are introduced, some atomic decomposition theorems for them are established and their duals are investigated. The results closely depend on the geometrical properties of the Banach space in which the martingales take values.
基金Supported by the National Natural Science Foun-dation of China (10371093)
文摘The atomic decompositions of weak Hardy spaces of Banach-space-valued martingales are given. With the help of the atomic decompositions, some inequalities for B-valued martingales are established in the case 0〈r≤1. Here the results are connected closely with the p-uniform smoothness and q-uniform convexity of Banach spaces which the martingales take values in.
文摘It provides the boundary proof of Marcnkiewicz integral μ Ω(f)(x) on Herz_type Hardy spaces. That is: if n(1-1q)≤α【n(1-1q)+β then μ Ω(f)(x) is boundendess from H K· α,p q(R n) to K· α,p q(R n); if α=n(1-1q)+β then μ Ω(f)(x) is boundedness from H K· α,p q(R n) to W K· α,p q(R n).
基金Supported Partially by NSF of China (10371087) Education Committee of Anhui Province (2003kj034zd).
文摘Let Tμ,b,m be the higher order commutator generated by a generalized fractional integral operator Tμ and a BMO function b. In this paper, we will study the boundedness of Tμ,b,m on classical Hardy spaces and Herz-type Hardy spaces.
基金NNSFC(11771223,11501308)Natural science foundation of Inner Mongolia(2019MS01003).
文摘Multi-parameter mixed Hardy space Hpmix is introduced by a new discrete Calderon's identity.As an application,we obtain the Hmix^p→ L^p(R^n1+n2)boundedness of operators in the mixed Journe’s class.
基金Supported by NSP of China (Grant No. 10571015)RFDP of China (Grant No. 20050027025).
文摘Let A be a symmetric expansive matrix and H^p(R^n) be the anisotropic Hardy space associated with A. For a function m in L∞(R^n), an appropriately chosen function η in Cc^∞(R^n) and j ∈ Z define mj(ξ) = m(A^jξ)η(ξ). The authors show that if 0 〈 p 〈 1 and mj belongs to the anisotropic nonhomogeneous Herz space K1^1/P^-1,p(R^n), then m is a Fourier multiplier from H^p(R^n) to L^V(R^n). For p = 1, a similar result is obtained if the space K1^0.1(R^n) is replaced by a slightly smaller space K(w). Moreover, the authors show that if 0 〈 p 〈 1 and if the sequence {(mj)^v} belongs to a certain mixednorm space, depending on p, then m is also a Fourier multiplier from H^p(R^n) to L^v(R^n).
文摘A new maximal function is introduced in the dual spaces of test function spaces on spaces of homogeneous type. Using this maximal function, we get new characterization of atomic H^p spaces.
文摘Analytic Hardy and BMO spaces on the quantum torus are introduced. Some basic properties of these spaces are presented. In particular, the associated H 1-BMO duality theorem is proved. Finally, we discuss some possible extensions of the obtained results.
基金Supported by the NSF of China (10371087)NSF of Anhui Province (07021019)+2 种基金Education Committee ofAnhui Province (KJ2007A009Kj2008B244)the Grant for Younth of Anhui Normal University (2009xqn58)
文摘In this paper, we study the boundedness of higher order commutators of gen- eralized fractional integral operators on weighted Lp spaces and Herz-type Hardy spaces.
基金Supported by the NECF and the NECF and the NNSF of China
文摘Let (.the Muckenhoupt class). In this paper, the author introduce the weighted Herz-type Hardy spaces (w2) and present their atomic decomposition. Using the atomic decomposition, the author find out their dual spaces, establish the boundedness on these spaces of the pseudo-differential operators of order zero and show that , the class of C(Rn)-functions with compactly support, is dense in and there is a subsequence, which converges in distrbutional sense to some distribution of , of any bounded sequence in In addition, the author also set up the boundedness of some non-linear quantities in compensated compactness.
基金This paperwas written while theauthorwasresearching at Humboldt University in Berlin supported by Alexandervon Humboldt Foundation.This research was also supported by the Hungarian Scientific Research Funds (OTKA) NoF0 1 963 3 and by the Foundation
文摘It is proved that the maximal operator of the Marczinkiewicz-Fejér meams of a double Walsh-Fourier series is bounded from the two-dimensional dyadic martingale Hardy space H p to L p (2/3<p<∞) and is of weak type (1,1). As a consequence we obtain that the Marczinkiewicz-Fejér means of a function f∈L 1 converge a.e. to the function in question. Moreover, we prove that these means are uniformly bounded on H p whenever 2/3<p<∞. Thus, in case f∈H p , the Marczinkiewicz-Fejér means conv f in H p norm. The same results are proved for the conjugate means, too.
基金Supported by NSF of China and the Fund of Doctoral Program of N.E.C.
文摘Applying the decomposition theorems in [1] and [2] , we obtain the boundedness theorem of Calderbn-Zygmund operator of type 6 on the Hardy spaces of weighted Herz type and establish interpolation theorem of linear operators on the weighted Herz spaces. -
基金Project supported by the National Natural Science Foundation of China (No. 10377108)the Natural Science Foundation of Guangdong Province (No. 031495), China
文摘In this paper, we give the four equivalent characterizations for the weighted local hardy spaces on Lipschitz domains. Also, we give their application for the harmonic function defined in bounded Lipschitz domains.