Electrical impedance tomography (EIT) is a fast and cost-effective technique that provides a tomographic conductivity image of a subject from boundary current-voltage data. This paper proposes a time and memory effici...Electrical impedance tomography (EIT) is a fast and cost-effective technique that provides a tomographic conductivity image of a subject from boundary current-voltage data. This paper proposes a time and memory efficient method for solving a large scale 3D EIT image reconstruction problem and the ill-posed linear inverse problem. First, we use block-based sampling for a large number of measured data from many electrodes. This method will reduce the size of Jacobian matrix and can improve accuracy of reconstruction by using more electrodes. And then, a sparse matrix reduction technique is proposed using thresholding to set very small values of the Jacobian matrix to zero. By adjusting the Jacobian matrix into a sparse format, the element with zeros would be eliminated, which results in a saving of memory requirement. Finally, we built up the relationship between compressed sensing and EIT definitely and induce the CS: two-step Iterative Shrinkage/Thresholding and block-based method into EIT image reconstruction algorithm. The results show that block-based compressed sensing enables the large scale 3D EIT problem to be efficient. For a 72-electrodes EIT system, our proposed method could save at least 61% of memory and reduce time by 72% than compressed sensing method only. The improvements will be obvious by using more electrodes. And this method is not only better at anti-noise, but also faster and better resolution.展开更多
With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color image...With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color images.It is predicated on 2D compressed sensing(CS)and the hyperchaotic system.First,an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security.Then,the processed images are con-currently encrypted and compressed using 2D CS.Among them,chaotic sequences replace traditional random measurement matrices to increase the system’s security.Third,the processed images are re-encrypted using a combination of permutation and diffusion algorithms.In addition,the 2D projected gradient with an embedding decryption(2DPG-ED)algorithm is used to reconstruct images.Compared with the traditional reconstruction algorithm,the 2DPG-ED algorithm can improve security and reduce computational complexity.Furthermore,it has better robustness.The experimental outcome and the performance analysis indicate that this algorithm can withstand malicious attacks and prove the method is effective.展开更多
We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement ti...We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement time by over 75%compared to a global high-resolution measurement.Mimicking the characteristics of the human retina system,the resolution distribution follows the principle of gradually decreasing.The system allows the spectral peaks of interest to be captured dynamically or to be specified a priori by a user.The system was tested by measuring single and dual spectral peaks,and the results of spectral peaks are consistent with those of global high-resolution measurements.展开更多
The estimation of sparse underwater acoustic channels with a large time delay spread is investigated under the framework of compressed sensing. For these types of channels, the excessively long impulse response will s...The estimation of sparse underwater acoustic channels with a large time delay spread is investigated under the framework of compressed sensing. For these types of channels, the excessively long impulse response will significantly degrade the convergence rate and tracking capability of the traditional estimation algorithms such as least squares (LS), while excluding the use of the delay-Doppler spread function due to huge computational complexity. By constructing a Toeplitz matrix with a training sequence as the measurement matrix, the estimation problem of long sparse acoustic channels is formulated into a compressed sensing problem to facilitate the efficient exploitation of sparsity. Furthermore, unlike the traditional l1 norm or exponent-based approximation l0 norm sparse recovery strategy, a novel variant of approximate l0 norm called AL0 is proposed, minimization of which leads to the derivation of a hybrid approach by iteratively projecting the steepest descent solution to the feasible set. Numerical simulations as well as sea trial experiments are compared and analyzed to demonstrate the superior performance of the proposed algorithm.展开更多
To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compres...To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compressed sensing(PICCS)-based spectral X-ray CT image reconstruction. The PICCS-based image reconstruction takes advantage of the compressed sensing theory, a prior image and an optimization algorithm to improve the image quality of CT reconstructions.To evaluate the performance of the proposed method, three optimization algorithms and three prior images are employed and compared in terms of reconstruction accuracy and noise characteristics of the reconstructed images in each energy bin.The experimental simulation results show that the image xbins^W is the best as the prior image in general with respect to the three optimization algorithms; and the SPS algorithm offers the best performance for the simulated phantom with respect to the three prior images. Compared with filtered back-projection(FBP), the PICCS via the SPS algorithm and xbins^W as the prior image can offer the noise reduction in the reconstructed images up to 80. 46%, 82. 51%, 88. 08% in each energy bin,respectively. M eanwhile, the root-mean-squared error in each energy bin is decreased by 15. 02%, 18. 15%, 34. 11% and the correlation coefficient is increased by 9. 98%, 11. 38%,15. 94%, respectively.展开更多
Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgori...Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgorithm, called chaotic compressive sensing (CS) encryption (CCSE), which can not only improve the efficiencyof image transmission but also introduce the high security of the chaotic system. Specifically, the proposed CCSEcan fully leverage the advantages of the Chebyshev chaotic system and CS, enabling it to withstand various attacks,such as differential attacks, and exhibit robustness. First, we use a sparse trans-form to sparse the plaintext imageand then use theArnold transformto perturb the image pixels. After that,we elaborate aChebyshev Toeplitz chaoticsensing matrix for CCSE. By using this Toeplitz matrix, the perturbed image is compressed and sampled to reducethe transmission bandwidth and the amount of data. Finally, a bilateral diffusion operator and a chaotic encryptionoperator are used to perturb and expand the image pixels to change the pixel position and value of the compressedimage, and ultimately obtain an encrypted image. Experimental results show that our method can be resistant tovarious attacks, such as the statistical attack and noise attack, and can outperform its current competitors.展开更多
A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete...A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete wavelet transform.Then, the coefficient matrix is scrambled and compressed to obtain a size-reduced image using the Fisher–Yates shuffle and parallel compressive sensing. Subsequently, to increase the security of the proposed algorithm, the compressed image is re-encrypted through permutation and diffusion to obtain a noise-like secret image. Finally, an adaptive embedding method based on edge detection for different carrier images is proposed to generate a visually meaningful cipher image. To improve the plaintext sensitivity of the algorithm, the counter mode is combined with the hash function to generate keys for chaotic systems. Additionally, an effective permutation method is designed to scramble the pixels of the compressed image in the re-encryption stage. The simulation results and analyses demonstrate that the proposed algorithm performs well in terms of visual security and decryption quality.展开更多
A new method for reconstructing the compressed sensing color image by solving an optimization problem based on total variation in the quaternion field is proposed, which can effectively improve the reconstructing abil...A new method for reconstructing the compressed sensing color image by solving an optimization problem based on total variation in the quaternion field is proposed, which can effectively improve the reconstructing ability of the color image. First, the color image is converted from RGB (red, green, blue) space to CMYK (cyan, magenta, yellow, black) space, which is assigned to a quaternion matrix. Meanwhile, the quaternion matrix is converted into the information of the phase and amplitude by the Euler form of the quatemion. Secondly, the phase and amplitude of the quatemion matrix are used as the smoothness constraints for the compressed sensing (CS) problem to make the reconstructing results more accurate. Finally, an iterative method based on gradient is used to solve the CS problem. Experimental results show that by considering the information of the phase and amplitude, the proposed method can achieve better performance than the existing method that treats the three components of the color image as independent parts.展开更多
The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target refle...The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target reflectivity, two imaging methods based on CS, termed the CS-based 2D joint imaging algorithm and the CS-based 2D decoupled imaging algorithm, are proposed. These methods incorporate the coherent mixing operation into the sparse dictionary, and take random measurements in both range and azimuth directions to get high resolution radar images, thus can remarkably reduce the data rate and simplify the hardware design of the radar system while maintaining imaging quality. Ex- periments from both simulated data and measured data in the anechoic chamber show that the proposed imaging methods can get more focused images than the traditional fast Fourier trans- form method. Wherein the joint algorithm has stronger robustness and can provide clearer inverse synthetic aperture radar images, while the decoupled algorithm is computationally more efficient but has slightly degraded imaging quality, which can be improved by increasing measurements or using a robuster recovery algorithm nevertheless.展开更多
As the amount of data produced by ground penetrating radar (GPR) for roots is large, the transmission and the storage of data consumes great resources. To alleviate this problem, we propose here a root imaging algor...As the amount of data produced by ground penetrating radar (GPR) for roots is large, the transmission and the storage of data consumes great resources. To alleviate this problem, we propose here a root imaging algorithm using chaotic particle swarm optimal (CPSO) compressed sensing based on GPR data according to the sparsity of root space. Radar data are decomposed, observed, measured and represented in sparse manner, so roots image can be reconstructed with limited data. Firstly, radar signal measurement and sparse representation are implemented, and the solution space is established by wavelet basis and Gauss random matrix; secondly, the matching function is considered as the fitness function, and the best fitness value is found by a PSO algorithm; then, a chaotic search was used to obtain the global optimal operator; finally, the root image is reconstructed by the optimal operators. A-scan data, B-scan data, and complex data from American GSSI GPR is used, respectively, in the experimental test. For B-scan data, the computation time was reduced 60 % and PSNR was improved 5.539 dB; for actual root data imaging, the reconstruction PSNR was 26.300 dB, and total computation time was only 67.210 s. The CPSO-OMP algorithm overcomes the problem of local optimum trapping and comprehensively enhances the precision during reconstruction.展开更多
High resolution range imaging with correlation processing suffers from high sidelobe pedestal in random frequency-hopping wideband radar. After the factors which affect the sidelobe pedestal being analyzed, a compress...High resolution range imaging with correlation processing suffers from high sidelobe pedestal in random frequency-hopping wideband radar. After the factors which affect the sidelobe pedestal being analyzed, a compressed sensing based algorithm for high resolution range imaging and a new minimized ll-norm criterion for motion compensation are proposed. The random hopping of the transmitted carrier frequency is converted to restricted isometry property of the observing matrix. Then practical problems of imaging model solution and signal parameter design are resolved. Due to the particularity of the proposed algorithm, two new indicators of range profile, i.e., average signal to sidelobe ratio and local similarity, are defined. The chamber measured data are adopted to testify the validity of the proposed algorithm, and simulations are performed to analyze the precision of velocity measurement as well as the performance of motion compensation. The simulation results show that the proposed algorithm has such advantages as high precision velocity measurement, low sidelobe and short period imaging, which ensure robust imaging for moving targets when signal-to-noise ratio is above 10 dB.展开更多
A compressed sensing(CS) based channel estimation algorithm is proposed by using the delay-Doppler sparsity of the fast fading channel.A compressive basis expansion channel model with sparsity in both time and frequ...A compressed sensing(CS) based channel estimation algorithm is proposed by using the delay-Doppler sparsity of the fast fading channel.A compressive basis expansion channel model with sparsity in both time and frequency domains is given.The pilots in accordance with a novel random pilot matrix in both time and frequency domains are sent to measure the delay-Doppler sparsity channel.The relatively nonzero channel coefficients are tracked by random pilots at a sampling rate significantly below the Nyquist rate.The sparsity channels are estimated from a very limited number of channel measurements by the basis pursuit algorithm.The proposed algorithm can effectively improve the channel estimation performance when the number of pilot symbols is reduced with improvement of throughput efficiency.展开更多
Wireless Sensor Networks(WSN) are mainly characterized by a potentially large number of distributed sensor nodes which collectively transmit information about sensed events to the sink.In this paper,we present a Distr...Wireless Sensor Networks(WSN) are mainly characterized by a potentially large number of distributed sensor nodes which collectively transmit information about sensed events to the sink.In this paper,we present a Distributed Wavelet Basis Generation(DWBG) algorithm performing at the sink to obtain the distributed wavelet basis in WSN.And on this basis,a Wavelet Transform-based Distributed Compressed Sensing(WTDCS) algorithm is proposed to compress and reconstruct the sensed data with spatial correlation.Finally,we make a detailed analysis of relationship between reconstruction performance and WTDCS algorithm parameters such as the compression ratio,the channel Signal-to-Noise Ratio(SNR),the observation noise power and the correlation decay parameter by simulation.The simulation results show that WTDCS can achieve high performance in terms of energy and reconstruction accuracy,as compared to the conventional distributed wavelet transform algorithm.展开更多
Compressed sensing offers a new wideband spectrum sensing scheme in Cognitive Radio (CR). A major challenge of this scheme is how to determinate the required measurements while the signal sparsity is not known a prior...Compressed sensing offers a new wideband spectrum sensing scheme in Cognitive Radio (CR). A major challenge of this scheme is how to determinate the required measurements while the signal sparsity is not known a priori. This paper presents a cooperative sensing scheme based on se-quential compressed sensing where sequential measurements are collected from the analog-to-information converters. A novel cooperative compressed sensing recovery algorithm named Simul-taneous Sparsity Adaptive Matching Pursuit (SSAMP) is utilized for sequential compressed sensing in order to estimate the reconstruction errors and determinate the minimal number of required meas-urements. Once the fusion center obtains enough measurements, the reconstruction spectrum sparse vectors are then used to make a decision on spectrum occupancy. Simulations corroborate the effec-tiveness of the estimation and sensing performance of our cooperative scheme. Meanwhile, the per-formance of SSAMP and Simultaneous Orthogonal Matching Pursuit (SOMP) is evaluated by Mean-Square estimation Errors (MSE) and sensing time.展开更多
The traditional compressed sensing method for improving resolution is realized in the frequency domain.This method is aff ected by noise,which limits the signal-to-noise ratio and resolution,resulting in poor inversio...The traditional compressed sensing method for improving resolution is realized in the frequency domain.This method is aff ected by noise,which limits the signal-to-noise ratio and resolution,resulting in poor inversion.To solve this problem,we improved the objective function that extends the frequency domain to the Gaussian frequency domain having denoising and smoothing characteristics.Moreover,the reconstruction of the sparse refl ection coeffi cient is implemented by the mixed L1_L2 norm algorithm,which converts the L0 norm problem into an L1 norm problem.Additionally,a fast threshold iterative algorithm is introduced to speed up convergence and the conjugate gradient algorithm is used to achieve debiasing for eliminating the threshold constraint and amplitude error.The model test indicates that the proposed method is superior to the conventional OMP and BPDN methods.It not only has better denoising and smoothing eff ects but also improves the recognition accuracy of thin interbeds.The actual data application also shows that the new method can eff ectively expand the seismic frequency band and improve seismic data resolution,so the method is conducive to the identifi cation of thin interbeds for beach-bar sand reservoirs.展开更多
To provide Artificial Intelligence(AI)services such as object detection,Internet of Things(IoT)sensor devices should be able to send a large amount of data such as images and videos.However,this inevitably causes IoT ...To provide Artificial Intelligence(AI)services such as object detection,Internet of Things(IoT)sensor devices should be able to send a large amount of data such as images and videos.However,this inevitably causes IoT networks to be severely overloaded.In this paper,therefore,we propose a novel oneM2M-compliant Artificial Intelligence of Things(AIoT)system for reducing overall data traffic and offering object detection.It consists of some IoT sensor devices with random sampling functions controlled by a compressed sensing(CS)rate,an IoT edge gateway with CS recovery and domain transform functions related to compressed sensing,and a YOLOv5 deep learning function for object detection,and an IoT server.By analyzing the effects of compressed sensing on data traffic reduction in terms of data rate per IoT sensor device,we showed that the proposed AIoT system can reduce the overall data traffic by changing compressed sensing rates of random sampling functions in IoT sensor devices.In addition,we analyzed the effects of the compressed sensing on YOLOv5 object detection in terms of performance metrics such as recall,precision,mAP50,and mAP,and found that recall slightly decreases but precision remains almost constant even though the compressed sensing rate decreases and that mAP50 and mAP are gradually degraded according to the decreased compressed sensing rate.Consequently,if proper compressed sensing rates are chosen,the proposed AIoT system will reduce the overall data traffic without significant performance degradation of YOLOv5.展开更多
In the multi-target localization based on Compressed Sensing(CS),the sensing matrix's characteristic is significant to the localization accuracy.To improve the CS-based localization approach's performance,we p...In the multi-target localization based on Compressed Sensing(CS),the sensing matrix's characteristic is significant to the localization accuracy.To improve the CS-based localization approach's performance,we propose a sensing matrix optimization method in this paper,which considers the optimization under the guidance of the t%-averaged mutual coherence.First,we study sensing matrix optimization and model it as a constrained combinatorial optimization problem.Second,the t%-averaged mutual coherence is adopted as the optimality index to evaluate the quality of different sensing matrixes,where the threshold t is derived through the K-means clustering.With the settled optimality index,a hybrid metaheuristic algorithm named Genetic Algorithm-Tabu Local Search(GA-TLS)is proposed to address the combinatorial optimization problem to obtain the final optimized sensing matrix.Extensive simulation results reveal that the CS localization approaches using different recovery algorithms benefit from the proposed sensing matrix optimization method,with much less localization error compared to the traditional sensing matrix optimization methods.展开更多
Compressed Sensing (CS) offers a method to solve the channel estimation problems for an underwater acoustic system, based on the existence of a sparse representation of the treated signal and an overcomplete diction...Compressed Sensing (CS) offers a method to solve the channel estimation problems for an underwater acoustic system, based on the existence of a sparse representation of the treated signal and an overcomplete dictionary with a set of non-orthogonal bases. In this paper, we proposed a new approach to optimize dictionaries by decreasing the average measure of the mutual coherence of the effective dictionary. A fixed link between the average mutual coherence and the CS perforrmnce is indicated by designing three factors: operating bandwidth, the number of pilot subcarriers, and coherence bandwidth. Both the Orthogonal Matching Pursuit (OMP) and the Basis Pursuit De-Noising (BPDN) are compared to the Dantzig Selector (DS) for different Signal Noise Ratio (SNR) and shown to benefit from the newly designed dictionary. Nurnerical sinmlations and experimental data of an OFDM receiver are used to evaluate the proposed method in comparison with the conventional LeastSquare (LS) estirmtor. The results show that the dictionary with a better condition considerably improves the perforrmnce of the channel estimation.展开更多
To avoid interference, compressed sensing is introduced into multiuser cooperative network. A cooperative compressed sensing and amplify-and-forward(CCS-AF)scheme is proposed, and it is proved that the channel capacit...To avoid interference, compressed sensing is introduced into multiuser cooperative network. A cooperative compressed sensing and amplify-and-forward(CCS-AF)scheme is proposed, and it is proved that the channel capacity increases compared with the traditional cooperative scheme by considering the CCS-AF transmission matrix as the measurement matrix. Moreover, a new power allocation algorithm among the relays is proposed to improve the channel capacity. Numerical results validate the effectiveness of the proposed scheme.展开更多
文摘Electrical impedance tomography (EIT) is a fast and cost-effective technique that provides a tomographic conductivity image of a subject from boundary current-voltage data. This paper proposes a time and memory efficient method for solving a large scale 3D EIT image reconstruction problem and the ill-posed linear inverse problem. First, we use block-based sampling for a large number of measured data from many electrodes. This method will reduce the size of Jacobian matrix and can improve accuracy of reconstruction by using more electrodes. And then, a sparse matrix reduction technique is proposed using thresholding to set very small values of the Jacobian matrix to zero. By adjusting the Jacobian matrix into a sparse format, the element with zeros would be eliminated, which results in a saving of memory requirement. Finally, we built up the relationship between compressed sensing and EIT definitely and induce the CS: two-step Iterative Shrinkage/Thresholding and block-based method into EIT image reconstruction algorithm. The results show that block-based compressed sensing enables the large scale 3D EIT problem to be efficient. For a 72-electrodes EIT system, our proposed method could save at least 61% of memory and reduce time by 72% than compressed sensing method only. The improvements will be obvious by using more electrodes. And this method is not only better at anti-noise, but also faster and better resolution.
基金This work was supported in part by the National Natural Science Foundation of China under Grants 71571091,71771112the State Key Laboratory of Synthetical Automation for Process Industries Fundamental Research Funds under Grant PAL-N201801the Excellent Talent Training Project of University of Science and Technology Liaoning under Grant 2019RC05.
文摘With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color images.It is predicated on 2D compressed sensing(CS)and the hyperchaotic system.First,an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security.Then,the processed images are con-currently encrypted and compressed using 2D CS.Among them,chaotic sequences replace traditional random measurement matrices to increase the system’s security.Third,the processed images are re-encrypted using a combination of permutation and diffusion algorithms.In addition,the 2D projected gradient with an embedding decryption(2DPG-ED)algorithm is used to reconstruct images.Compared with the traditional reconstruction algorithm,the 2DPG-ED algorithm can improve security and reduce computational complexity.Furthermore,it has better robustness.The experimental outcome and the performance analysis indicate that this algorithm can withstand malicious attacks and prove the method is effective.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2020MF119 and ZR2020MA082)the National Natural Science Foundation of China(Grant No.62002208)the National Key Research and Development Program of China(Grant No.2018YFB0504302).
文摘We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement time by over 75%compared to a global high-resolution measurement.Mimicking the characteristics of the human retina system,the resolution distribution follows the principle of gradually decreasing.The system allows the spectral peaks of interest to be captured dynamically or to be specified a priori by a user.The system was tested by measuring single and dual spectral peaks,and the results of spectral peaks are consistent with those of global high-resolution measurements.
基金The National Natural Science Foundation of China(No.11274259)the Open Project Program of the Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education(No.UASP1305)
文摘The estimation of sparse underwater acoustic channels with a large time delay spread is investigated under the framework of compressed sensing. For these types of channels, the excessively long impulse response will significantly degrade the convergence rate and tracking capability of the traditional estimation algorithms such as least squares (LS), while excluding the use of the delay-Doppler spread function due to huge computational complexity. By constructing a Toeplitz matrix with a training sequence as the measurement matrix, the estimation problem of long sparse acoustic channels is formulated into a compressed sensing problem to facilitate the efficient exploitation of sparsity. Furthermore, unlike the traditional l1 norm or exponent-based approximation l0 norm sparse recovery strategy, a novel variant of approximate l0 norm called AL0 is proposed, minimization of which leads to the derivation of a hybrid approach by iteratively projecting the steepest descent solution to the feasible set. Numerical simulations as well as sea trial experiments are compared and analyzed to demonstrate the superior performance of the proposed algorithm.
基金The National Natural Science Foundation of China(No.51575256)the Fundamental Research Funds for the Central Universities(No.NP2015101,XZA16003)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compressed sensing(PICCS)-based spectral X-ray CT image reconstruction. The PICCS-based image reconstruction takes advantage of the compressed sensing theory, a prior image and an optimization algorithm to improve the image quality of CT reconstructions.To evaluate the performance of the proposed method, three optimization algorithms and three prior images are employed and compared in terms of reconstruction accuracy and noise characteristics of the reconstructed images in each energy bin.The experimental simulation results show that the image xbins^W is the best as the prior image in general with respect to the three optimization algorithms; and the SPS algorithm offers the best performance for the simulated phantom with respect to the three prior images. Compared with filtered back-projection(FBP), the PICCS via the SPS algorithm and xbins^W as the prior image can offer the noise reduction in the reconstructed images up to 80. 46%, 82. 51%, 88. 08% in each energy bin,respectively. M eanwhile, the root-mean-squared error in each energy bin is decreased by 15. 02%, 18. 15%, 34. 11% and the correlation coefficient is increased by 9. 98%, 11. 38%,15. 94%, respectively.
基金the National Natural Science Foundation of China(Nos.62002028,62102040 and 62202066).
文摘Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgorithm, called chaotic compressive sensing (CS) encryption (CCSE), which can not only improve the efficiencyof image transmission but also introduce the high security of the chaotic system. Specifically, the proposed CCSEcan fully leverage the advantages of the Chebyshev chaotic system and CS, enabling it to withstand various attacks,such as differential attacks, and exhibit robustness. First, we use a sparse trans-form to sparse the plaintext imageand then use theArnold transformto perturb the image pixels. After that,we elaborate aChebyshev Toeplitz chaoticsensing matrix for CCSE. By using this Toeplitz matrix, the perturbed image is compressed and sampled to reducethe transmission bandwidth and the amount of data. Finally, a bilateral diffusion operator and a chaotic encryptionoperator are used to perturb and expand the image pixels to change the pixel position and value of the compressedimage, and ultimately obtain an encrypted image. Experimental results show that our method can be resistant tovarious attacks, such as the statistical attack and noise attack, and can outperform its current competitors.
基金supported by the Key Area R&D Program of Guangdong Province (Grant No.2022B0701180001)the National Natural Science Foundation of China (Grant No.61801127)+1 种基金the Science Technology Planning Project of Guangdong Province,China (Grant Nos.2019B010140002 and 2020B111110002)the Guangdong-Hong Kong-Macao Joint Innovation Field Project (Grant No.2021A0505080006)。
文摘A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete wavelet transform.Then, the coefficient matrix is scrambled and compressed to obtain a size-reduced image using the Fisher–Yates shuffle and parallel compressive sensing. Subsequently, to increase the security of the proposed algorithm, the compressed image is re-encrypted through permutation and diffusion to obtain a noise-like secret image. Finally, an adaptive embedding method based on edge detection for different carrier images is proposed to generate a visually meaningful cipher image. To improve the plaintext sensitivity of the algorithm, the counter mode is combined with the hash function to generate keys for chaotic systems. Additionally, an effective permutation method is designed to scramble the pixels of the compressed image in the re-encryption stage. The simulation results and analyses demonstrate that the proposed algorithm performs well in terms of visual security and decryption quality.
基金The National Basic Research Program of China(973Program)(No.2011CB707904)the National Natural Science Foundation of China(No.61201344,61271312,61073138)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110092110023,20120092120036)the Natural Science Foundation of Jiangsu Province(No.BK2012329)
文摘A new method for reconstructing the compressed sensing color image by solving an optimization problem based on total variation in the quaternion field is proposed, which can effectively improve the reconstructing ability of the color image. First, the color image is converted from RGB (red, green, blue) space to CMYK (cyan, magenta, yellow, black) space, which is assigned to a quaternion matrix. Meanwhile, the quaternion matrix is converted into the information of the phase and amplitude by the Euler form of the quatemion. Secondly, the phase and amplitude of the quatemion matrix are used as the smoothness constraints for the compressed sensing (CS) problem to make the reconstructing results more accurate. Finally, an iterative method based on gradient is used to solve the CS problem. Experimental results show that by considering the information of the phase and amplitude, the proposed method can achieve better performance than the existing method that treats the three components of the color image as independent parts.
基金supported by the Prominent Youth Fund of the National Natural Science Foundation of China (61025006)
文摘The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target reflectivity, two imaging methods based on CS, termed the CS-based 2D joint imaging algorithm and the CS-based 2D decoupled imaging algorithm, are proposed. These methods incorporate the coherent mixing operation into the sparse dictionary, and take random measurements in both range and azimuth directions to get high resolution radar images, thus can remarkably reduce the data rate and simplify the hardware design of the radar system while maintaining imaging quality. Ex- periments from both simulated data and measured data in the anechoic chamber show that the proposed imaging methods can get more focused images than the traditional fast Fourier trans- form method. Wherein the joint algorithm has stronger robustness and can provide clearer inverse synthetic aperture radar images, while the decoupled algorithm is computationally more efficient but has slightly degraded imaging quality, which can be improved by increasing measurements or using a robuster recovery algorithm nevertheless.
基金supported by the Fundamental Research Funds for the Central Universities(DL13BB21)the Natural Science Foundation of Heilongjiang Province(C2015054)+1 种基金Heilongjiang Province Technology Foundation for Selected Osverseas ChineseNatural Science Foundation of Heilongjiang Province(F2015036)
文摘As the amount of data produced by ground penetrating radar (GPR) for roots is large, the transmission and the storage of data consumes great resources. To alleviate this problem, we propose here a root imaging algorithm using chaotic particle swarm optimal (CPSO) compressed sensing based on GPR data according to the sparsity of root space. Radar data are decomposed, observed, measured and represented in sparse manner, so roots image can be reconstructed with limited data. Firstly, radar signal measurement and sparse representation are implemented, and the solution space is established by wavelet basis and Gauss random matrix; secondly, the matching function is considered as the fitness function, and the best fitness value is found by a PSO algorithm; then, a chaotic search was used to obtain the global optimal operator; finally, the root image is reconstructed by the optimal operators. A-scan data, B-scan data, and complex data from American GSSI GPR is used, respectively, in the experimental test. For B-scan data, the computation time was reduced 60 % and PSNR was improved 5.539 dB; for actual root data imaging, the reconstruction PSNR was 26.300 dB, and total computation time was only 67.210 s. The CPSO-OMP algorithm overcomes the problem of local optimum trapping and comprehensively enhances the precision during reconstruction.
基金Project(61171133) supported by the National Natural Science Foundation of ChinaProject(CX2011B019) supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(B110404) supported by Innovation Foundation for Outstanding Postgraduates of National University of Defense Technology,China
文摘High resolution range imaging with correlation processing suffers from high sidelobe pedestal in random frequency-hopping wideband radar. After the factors which affect the sidelobe pedestal being analyzed, a compressed sensing based algorithm for high resolution range imaging and a new minimized ll-norm criterion for motion compensation are proposed. The random hopping of the transmitted carrier frequency is converted to restricted isometry property of the observing matrix. Then practical problems of imaging model solution and signal parameter design are resolved. Due to the particularity of the proposed algorithm, two new indicators of range profile, i.e., average signal to sidelobe ratio and local similarity, are defined. The chamber measured data are adopted to testify the validity of the proposed algorithm, and simulations are performed to analyze the precision of velocity measurement as well as the performance of motion compensation. The simulation results show that the proposed algorithm has such advantages as high precision velocity measurement, low sidelobe and short period imaging, which ensure robust imaging for moving targets when signal-to-noise ratio is above 10 dB.
基金supported by the National Natural Science Foundation of China(60972056)the Innovation Foundation of Shanghai Education Committee(09ZZ89)Shanghai Leading Academic Discipline Project and STCSM(S30108and08DZ2231100)
文摘A compressed sensing(CS) based channel estimation algorithm is proposed by using the delay-Doppler sparsity of the fast fading channel.A compressive basis expansion channel model with sparsity in both time and frequency domains is given.The pilots in accordance with a novel random pilot matrix in both time and frequency domains are sent to measure the delay-Doppler sparsity channel.The relatively nonzero channel coefficients are tracked by random pilots at a sampling rate significantly below the Nyquist rate.The sparsity channels are estimated from a very limited number of channel measurements by the basis pursuit algorithm.The proposed algorithm can effectively improve the channel estimation performance when the number of pilot symbols is reduced with improvement of throughput efficiency.
基金the National Basic Research Program of China,the National Natural Science Foundation of China,the open research fund of National Mobile Communications Research Laboratory,Southeast University,the Postdoctoral Science Foundation of Jiangsu Province,the University Natural Science Research Program of Jiangsu Province,the Basic Research Program of Jiangsu Province (Natural Science Foundation)
文摘Wireless Sensor Networks(WSN) are mainly characterized by a potentially large number of distributed sensor nodes which collectively transmit information about sensed events to the sink.In this paper,we present a Distributed Wavelet Basis Generation(DWBG) algorithm performing at the sink to obtain the distributed wavelet basis in WSN.And on this basis,a Wavelet Transform-based Distributed Compressed Sensing(WTDCS) algorithm is proposed to compress and reconstruct the sensed data with spatial correlation.Finally,we make a detailed analysis of relationship between reconstruction performance and WTDCS algorithm parameters such as the compression ratio,the channel Signal-to-Noise Ratio(SNR),the observation noise power and the correlation decay parameter by simulation.The simulation results show that WTDCS can achieve high performance in terms of energy and reconstruction accuracy,as compared to the conventional distributed wavelet transform algorithm.
基金Supported by the National High Technology Research and Development Program(No.2009AA01Z241)the National Natural Science Foundation(No.60971129,No.61071092)
文摘Compressed sensing offers a new wideband spectrum sensing scheme in Cognitive Radio (CR). A major challenge of this scheme is how to determinate the required measurements while the signal sparsity is not known a priori. This paper presents a cooperative sensing scheme based on se-quential compressed sensing where sequential measurements are collected from the analog-to-information converters. A novel cooperative compressed sensing recovery algorithm named Simul-taneous Sparsity Adaptive Matching Pursuit (SSAMP) is utilized for sequential compressed sensing in order to estimate the reconstruction errors and determinate the minimal number of required meas-urements. Once the fusion center obtains enough measurements, the reconstruction spectrum sparse vectors are then used to make a decision on spectrum occupancy. Simulations corroborate the effec-tiveness of the estimation and sensing performance of our cooperative scheme. Meanwhile, the per-formance of SSAMP and Simultaneous Orthogonal Matching Pursuit (SOMP) is evaluated by Mean-Square estimation Errors (MSE) and sensing time.
基金National Science and Technology Major Project(No.2016ZX05006-002 and 2017ZX05072-001).
文摘The traditional compressed sensing method for improving resolution is realized in the frequency domain.This method is aff ected by noise,which limits the signal-to-noise ratio and resolution,resulting in poor inversion.To solve this problem,we improved the objective function that extends the frequency domain to the Gaussian frequency domain having denoising and smoothing characteristics.Moreover,the reconstruction of the sparse refl ection coeffi cient is implemented by the mixed L1_L2 norm algorithm,which converts the L0 norm problem into an L1 norm problem.Additionally,a fast threshold iterative algorithm is introduced to speed up convergence and the conjugate gradient algorithm is used to achieve debiasing for eliminating the threshold constraint and amplitude error.The model test indicates that the proposed method is superior to the conventional OMP and BPDN methods.It not only has better denoising and smoothing eff ects but also improves the recognition accuracy of thin interbeds.The actual data application also shows that the new method can eff ectively expand the seismic frequency band and improve seismic data resolution,so the method is conducive to the identifi cation of thin interbeds for beach-bar sand reservoirs.
基金This work was supported by Institute for Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2020-0-00959,Fast Intelligence Analysis HW/SW Engine Exploiting IoT Platform for Boosting On-device AI in 5G Environment).
文摘To provide Artificial Intelligence(AI)services such as object detection,Internet of Things(IoT)sensor devices should be able to send a large amount of data such as images and videos.However,this inevitably causes IoT networks to be severely overloaded.In this paper,therefore,we propose a novel oneM2M-compliant Artificial Intelligence of Things(AIoT)system for reducing overall data traffic and offering object detection.It consists of some IoT sensor devices with random sampling functions controlled by a compressed sensing(CS)rate,an IoT edge gateway with CS recovery and domain transform functions related to compressed sensing,and a YOLOv5 deep learning function for object detection,and an IoT server.By analyzing the effects of compressed sensing on data traffic reduction in terms of data rate per IoT sensor device,we showed that the proposed AIoT system can reduce the overall data traffic by changing compressed sensing rates of random sampling functions in IoT sensor devices.In addition,we analyzed the effects of the compressed sensing on YOLOv5 object detection in terms of performance metrics such as recall,precision,mAP50,and mAP,and found that recall slightly decreases but precision remains almost constant even though the compressed sensing rate decreases and that mAP50 and mAP are gradually degraded according to the decreased compressed sensing rate.Consequently,if proper compressed sensing rates are chosen,the proposed AIoT system will reduce the overall data traffic without significant performance degradation of YOLOv5.
文摘In the multi-target localization based on Compressed Sensing(CS),the sensing matrix's characteristic is significant to the localization accuracy.To improve the CS-based localization approach's performance,we propose a sensing matrix optimization method in this paper,which considers the optimization under the guidance of the t%-averaged mutual coherence.First,we study sensing matrix optimization and model it as a constrained combinatorial optimization problem.Second,the t%-averaged mutual coherence is adopted as the optimality index to evaluate the quality of different sensing matrixes,where the threshold t is derived through the K-means clustering.With the settled optimality index,a hybrid metaheuristic algorithm named Genetic Algorithm-Tabu Local Search(GA-TLS)is proposed to address the combinatorial optimization problem to obtain the final optimized sensing matrix.Extensive simulation results reveal that the CS localization approaches using different recovery algorithms benefit from the proposed sensing matrix optimization method,with much less localization error compared to the traditional sensing matrix optimization methods.
基金Acknowledgements This work was supported by the National Science Foundation of China under Grant No. 60976065. The authors would like to thank the anonymous reviewers for comments that helped improve the paper.
文摘Compressed Sensing (CS) offers a method to solve the channel estimation problems for an underwater acoustic system, based on the existence of a sparse representation of the treated signal and an overcomplete dictionary with a set of non-orthogonal bases. In this paper, we proposed a new approach to optimize dictionaries by decreasing the average measure of the mutual coherence of the effective dictionary. A fixed link between the average mutual coherence and the CS perforrmnce is indicated by designing three factors: operating bandwidth, the number of pilot subcarriers, and coherence bandwidth. Both the Orthogonal Matching Pursuit (OMP) and the Basis Pursuit De-Noising (BPDN) are compared to the Dantzig Selector (DS) for different Signal Noise Ratio (SNR) and shown to benefit from the newly designed dictionary. Nurnerical sinmlations and experimental data of an OFDM receiver are used to evaluate the proposed method in comparison with the conventional LeastSquare (LS) estirmtor. The results show that the dictionary with a better condition considerably improves the perforrmnce of the channel estimation.
基金Supported by National Natural Science Foundation of China(No.61571323)
文摘To avoid interference, compressed sensing is introduced into multiuser cooperative network. A cooperative compressed sensing and amplify-and-forward(CCS-AF)scheme is proposed, and it is proved that the channel capacity increases compared with the traditional cooperative scheme by considering the CCS-AF transmission matrix as the measurement matrix. Moreover, a new power allocation algorithm among the relays is proposed to improve the channel capacity. Numerical results validate the effectiveness of the proposed scheme.