The block-by-block method,proposed by Linz for a kind of Volterra integral equations with nonsingular kernels,and extended by Kumar and Agrawal to a class of initial value problems of fractional differential equations...The block-by-block method,proposed by Linz for a kind of Volterra integral equations with nonsingular kernels,and extended by Kumar and Agrawal to a class of initial value problems of fractional differential equations(FDEs)with Caputo derivatives,is an efficient and stable scheme.We analytically prove and numerically verify that this method is convergent with order at least 3 for any fractional order indexα>0.展开更多
In this paper, we provide a generalized block-by-block method for constructing block-by-block systems to solve the system of linear Volterra integral equations of the second kind, and then deduce some of the special c...In this paper, we provide a generalized block-by-block method for constructing block-by-block systems to solve the system of linear Volterra integral equations of the second kind, and then deduce some of the special cases. Compared with the expansion method and He's homotopy perturbation method, respectively numerical examples are given to certify the effectiveness of the method. The results show that the block-by-block method is very effective, simple, and of high accuracy in solving the system of linear Volterra integral equations of the second kind.展开更多
基金supported by the State Key Laboratory of Scientific and Engineering Computing,Chinese Academy of Sciences and by Hunan Key Laboratory for Computation and Simulation in Science and Engineering,by National Natural Science Foundation of China(Grant Nos.60931002,11001072 and 11026154)partially by the Spanish Ministry of Science and Innovation under Grant AYA2009-14212-C05-05.
文摘The block-by-block method,proposed by Linz for a kind of Volterra integral equations with nonsingular kernels,and extended by Kumar and Agrawal to a class of initial value problems of fractional differential equations(FDEs)with Caputo derivatives,is an efficient and stable scheme.We analytically prove and numerically verify that this method is convergent with order at least 3 for any fractional order indexα>0.
基金Supported by the National Natural Science Foundation of China(10962008)
文摘In this paper, we provide a generalized block-by-block method for constructing block-by-block systems to solve the system of linear Volterra integral equations of the second kind, and then deduce some of the special cases. Compared with the expansion method and He's homotopy perturbation method, respectively numerical examples are given to certify the effectiveness of the method. The results show that the block-by-block method is very effective, simple, and of high accuracy in solving the system of linear Volterra integral equations of the second kind.