期刊文献+
共找到9,016篇文章
< 1 2 250 >
每页显示 20 50 100
Research on the Dual-Creation Talent Training Model of New Energy Automobile Based on Virtual Simulation
1
作者 Yanrui Qu Syaza Hazwani Zaini 《Journal of Contemporary Educational Research》 2024年第4期236-240,共5页
At present,as China vigorously develops new energy automobiles,the social demand for related talents has increased significantly,so the relevant institutions need to optimize and adjust the talent training mode to hel... At present,as China vigorously develops new energy automobiles,the social demand for related talents has increased significantly,so the relevant institutions need to optimize and adjust the talent training mode to help the development of new energy automobiles.This paper summarizes the existing problems of China’s new energy automobile talent training mode,and analyzes the significance of the virtual simulation-based dual-creation talent training mode of new energy automobile and its specific implementation strategies,in order to provide references for the relevant personnel. 展开更多
关键词 Virtual simulation New energy automobile Dual-creation Talent training
下载PDF
Equivalent Method of Integrated Power Generation System of Wind, Photovoltaic and Energy Storage in Power Flow Calculation and Transient Simulation 被引量:10
2
作者 王皓怀 汤涌 +3 位作者 侯俊贤 刘楠 李碧辉 张宏宇 《中国电机工程学报》 EI CSCD 北大核心 2012年第1期I0001-I0026,共26页
针对工程实际开展风光储联合发电系统在潮流计算和机电暂态仿真中的等值方法研究,旨在为大容量风光储联合发电系统的并网仿真分析奠定基础。将潮流计算的等值分为单元机组和集电系统2部分来研究。单元机组等值采用根据不同控制模式选... 针对工程实际开展风光储联合发电系统在潮流计算和机电暂态仿真中的等值方法研究,旨在为大容量风光储联合发电系统的并网仿真分析奠定基础。将潮流计算的等值分为单元机组和集电系统2部分来研究。单元机组等值采用根据不同控制模式选取不同节点类型的方法,针对集电系统等值提出基于损耗不变原则的方法。等值模型和详细模型的算例结果表明,潮流计算等值方法具有较好的精度。在机电暂态仿真动态等值中,基于实际工程计算的最严重工况分析原则,提出运行在满出力点的单机“倍乘”等值模型,为工程计算中的风光储联合发电系统动态等值提供了一种解决方案。 展开更多
关键词 综合发电系统 暂态仿真 光伏发电 潮流计算 等效方法 电力系统 风能 功率
下载PDF
Freak wave simulation based on nonlinear model and the research on the time-frequency energy spectrum of simulation results
3
作者 崔成 张宁川 李靖波 《Marine Science Bulletin》 CAS 2011年第1期25-39,共15页
VOF (volume of fluid) method has been used to make the numerical simulation of freak wave come true. The comparisons between the numerical results and linear theoretical results corresponding to Eq.(5) have been c... VOF (volume of fluid) method has been used to make the numerical simulation of freak wave come true. The comparisons between the numerical results and linear theoretical results corresponding to Eq.(5) have been carried out to show that the numerical results have a better exhibition of nonlinear characteristics. Wavelet analysis method has been adopted to investigate the time-frequency energy spectrum of simulation freak waves and the results reveal strong nonlinear interaction enables energy to be transferred to high harmonics during the progress of its formation. Varying water depth can enhance the nonlinear interaction, making much more energy be transferred to high harmonics and freak waves with higher asymmetry be generated. 展开更多
关键词 freak wave numerical simulation wavelet analysis varying water depthtime-frequency energy spectrum
下载PDF
Process simulation and energy integration in the mineral carbonation of blast furnace slag 被引量:3
4
作者 Jianqiu Gao Chun Li +8 位作者 Weizao Liu Jinpeng Hu Lin Wang Qiang Liu Bin Liang Hairong Yue Guoquan Zhang Dongmei Luo Siyang Tang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第1期157-167,共11页
Large quantities of blast furnace(BF) slag and CO_2 are discharged annually from iron and steel industries, along with a large amount of waste heat.The mineral carbonation of BF slag can not only reduce emissions of s... Large quantities of blast furnace(BF) slag and CO_2 are discharged annually from iron and steel industries, along with a large amount of waste heat.The mineral carbonation of BF slag can not only reduce emissions of solid waste but also realize the in-situ fixation of CO_2 with low energy consumption if integrated with the waste heat utilization.In this study, based on our previous works, Aspen Plus was employed to simulate and optimize the carbonation process and integrate the process energy.The effects of gehlenite extraction, MgSO_4 carbonation,and aluminum ammonium sulfate crystallization were studied systematically.The simulation results demonstrate that 2.57 kg of BF slag can sequester 1 kg of CO_2, requiring 5.34 MJ of energy(3.3 MJ heat and 2.04 MJ electricity), and this energy includes the capture of CO_2 from industrial flue gases.Approximately 60 kg net CO_2 emission reduction could be achieved for the disposal of one ton of BF slag.In addition, the by-product,aluminum ammonium sulfate, is a high value-added product.Preliminary economic analysis indicates that the profit for the whole process is 1127 CNY per ton of BF slag processed. 展开更多
关键词 Blast FURNACE slag Mineral CARBONATION Process simulation and energy integration Utilization of solid RESIDUALS AMMONIUM ALUM AMMONIUM SULFATE
下载PDF
Coupled simulation of BES-CFD and performance assessment of energy recovery ventilation system for office model 被引量:5
5
作者 Yunqing FAN T.Hayashi K.Ito 《Journal of Central South University》 SCIE EI CAS 2012年第3期633-638,共6页
Thermal comfort and indoor air quality as well as the energy efficiency have been recognized as essential parts of sustainable building assessment. This work aims to analyze the energy conservation of the heat recover... Thermal comfort and indoor air quality as well as the energy efficiency have been recognized as essential parts of sustainable building assessment. This work aims to analyze the energy conservation of the heat recovery ventilator and to investigate the effect of the air supply arrangement. Three types of mixing ventilation are chosen for the analysis of coupling ANSYS/FLUENT (a computational fluid dynamics (CFD) program) with TRNSYS (a building energy simulation (BES) software). The adoption of mutual complementary boundary conditions for CFD and BES provides more accurate and complete information of indoor air distribution and thermal performance in buildings. A typical office-space situated in a middle storey is chosen for the analysis. The office-space is equipped with air-conditioners on the ceiling. A heat recovery ventilation system directly supplies flesh air to the office space. Its thermal performance and indoor air distribution predicted by the coupled method are compared under three types of ventilation system. When the supply and return openings for ventilation are arranged on the ceiling, there is no critical difference between the predictions of the coupled method and BES on the energy consumption of HVAC because PID control is adopted for the supply air temperature of the occupied zone. On the other hand, approximately 21% discrepancy for the heat recovery estimation in the maximum between the simulated results of coupled method and BES-only can be obviously found in the floor air supply ventilation case. The discrepancy emphasizes the necessity of coupling CFD with BES when vertical air temperature gradient exists. Our future target is to estimate the optimum design of heat recovery ventilation system to control CO2 concentration by adjusting flow rate of flesh air. 展开更多
关键词 building energy simulation computational fluid dynamics (CFD) FLUENT TRNSYS energy saving
下载PDF
Energy method and numerical simulation of critical backfillheight in non-pillar continuous mining 被引量:2
6
作者 邓建 古德生 +1 位作者 李夕兵 彭怀生 《中国有色金属学会会刊:英文版》 EI CSCD 1999年第4期847-851,共5页
Non-pillar continuous mining(NPCM) is regarded as a high-efficient, high-level and one-step mining technology, which can be divided into two substopes. Back fill stability status in substope I, which directly influenc... Non-pillar continuous mining(NPCM) is regarded as a high-efficient, high-level and one-step mining technology, which can be divided into two substopes. Back fill stability status in substope I, which directly influence the loss rate and dilution rate, etc, will determine whether the experimental research is successful or not. By employing energy method of limit analysis and finite element numerical simulation method, the critical backfill height was determined under the prerequisite condition of its stability, which put forward theoretical basis for reasonable and correct selection of backfill’s parameters. The result showed that the first backfill could not keep stable for NPCM, while the other was able to. 展开更多
关键词 CONTINUOUS MINING CRITICAL HEIGHT energy method NUMERICAL simulation
下载PDF
On the energy conservation electrostatic particle-in-cell/Monte Carlo simulation: Benchmark and application to the radio frequency discharges 被引量:2
7
作者 王虹宇 姜巍 +1 位作者 孙鹏 孔令宝 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期418-426,共9页
We benchmark and analyze the error of energy conservation (EC) scheme in particle-in-cell/Monte Carlo (PIC/MC) algorithms by simulating the radio frequency discharge. The plasma heating behaviors and electron dist... We benchmark and analyze the error of energy conservation (EC) scheme in particle-in-cell/Monte Carlo (PIC/MC) algorithms by simulating the radio frequency discharge. The plasma heating behaviors and electron distributing functions obtained by one-dimensional (1D) simulation are analyzed. Both explicit and implicit algorithms are checked. The results showed that the EC scheme can eliminated the self-heating with wide grid spacing in both cases with a small reduction of the accuracies. In typical parameters, the EC implicit scheme has higher precision than EC explicit scheme. Some "numerical cooling" behaviors are observed and analyzed. Some other errors are also analyzed. The analysis showed that the EC implicit scheme can be used to qualitative estimation of some discharge problems with much less computational resource cost without much loss of accuracies. 展开更多
关键词 particle-in-cell/Monte Carlo simulation energy conservation grid heating discharging simulation
下载PDF
NUMERICAL SIMULATION OF EXTRUSION OF COMPOSITE POWDERS PREPARED BY HIGH ENERGY MILLING 被引量:2
8
作者 X.Q.Li W.P.Chen +3 位作者 W.Xia Q.L.Zhu Y.Y.Li E.D.Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第1期51-54,共4页
Based on the characteristic of high energy milling and the micromechanics of composite material, a plastic constitutive equation is implemented for milled composite powders. To check the equation, the extrusion of Ti/... Based on the characteristic of high energy milling and the micromechanics of composite material, a plastic constitutive equation is implemented for milled composite powders. To check the equation, the extrusion of Ti/Al composite powders prepared by high energy milling was simulated. It was from the numerical analysis that the predicted extrusion pressure mounted up with milling time and extrusion ratio increasing, which was perfect agreement with experimental results. 展开更多
关键词 high energy milling composite powder plastic constitutive equation EXTRUSION numerical simulation
下载PDF
Thermodynamic Analysis,Simulation and Optimization on Energy Savings of Ideal Internal Thermally Coupled Distillation Columns 被引量:3
9
作者 刘兴高 马龙华 钱积新 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2000年第1期57-63,共7页
Internal thermally coupled distillation columns (ITCDIC) are the frontier of distillation energy saving research. In this paper, a novel energy saving model of ideal ITCDIC and a simulation algorithm are presented,upo... Internal thermally coupled distillation columns (ITCDIC) are the frontier of distillation energy saving research. In this paper, a novel energy saving model of ideal ITCDIC and a simulation algorithm are presented,upon which a series of comparative studies on energy savings with conventional distillation columns are carried out. Furthermore, we present an optimization model of ideal ITCDIC, which can be used to achieve the maximum energy saving and find the optimal design parameters directly. The binary system of benzene-toluene is adopted for the illustrative example of simulation and optimization. The results show that the maximum energy saving of ITCDIC is 52.25% (compared with energy consumption of conventional distillation under the minimum reflux ratio operation); the optimal design parameters are obtained, where the rectifying section pressure and the feed thermal condition are Pr=0.3006 MPa and q=0.5107 respectively. 展开更多
关键词 DISTILLATION thermal coupling energy savings simulation OPTIMIZATION
下载PDF
CFD Simulation and Experimental Study of a New Elastic Blade Wave Energy Converter 被引量:4
10
作者 Chongfei Sun Jianzhong Shang +3 位作者 Zirong Luo Xin Li Zhongyue Lu Guoheng Wu 《Fluid Dynamics & Materials Processing》 EI 2020年第6期84-96,共13页
Small moving vehicles represent an important category of marine engineering tools and devices(equipment)typically used for ocean resource detection and maintenance of marine rights and interests.The lack of efficient ... Small moving vehicles represent an important category of marine engineering tools and devices(equipment)typically used for ocean resource detection and maintenance of marine rights and interests.The lack of efficient power supply modes is one of the technical bottlenecks restricting the effective utilisation of this type of equipment.In this work,the performance characteristics of a new type of elastic-blade/wave-energy converter(EBWEC)and its core energy conversion component(named wave energy absorber)are comprehensively studied.In particular,computational fluid dynamics(CFD)simulations and experiments have been used to analyze the hydrodynamics and performance characteristics of the EBWEC.The pressure cloud diagrams relating to the surface of the elastic blade were obtained through two-way fluid-solid coupling simulations.The influence of blade thickness and relative speed on the performance characteristics of EBWEC was analyzed accordingly.A prototype of the EBWEC and its bucket test platform were also developed.The power characteristics of the EBWEC were analyzed and studied by using the blade thickness and motion cycle as control variables.The present research shows that the EBWEC can effectively overcome the performance disadvantages related to the transmission shaft torque load and power curve fluctuations of rigid blade wave energy converters(RBWEC). 展开更多
关键词 Elastic blade wave energy converter structural design energy conversion mechanism computational fluid dynamics simulation EXPERIMENT hydrodynamic characteristics
下载PDF
Towards Production and Energy Coupling System Modeling and Simulation for Energy Optimization in the Process Industry 被引量:1
11
作者 戴毅茹 王坚 《Journal of Donghua University(English Edition)》 EI CAS 2011年第2期128-133,共6页
The production and energy coupling system is used to mainly present energy flow, material flow, information flow, and their coupling interaction. Through the modeling and simulation of this system, the performance of ... The production and energy coupling system is used to mainly present energy flow, material flow, information flow, and their coupling interaction. Through the modeling and simulation of this system, the performance of energy flow can be analyzed and optimized in the process industry. In order to study this system, the component based hybrid Petri net methodology (CpnHPN) is proposed, synthesizing a number of extended Petri net methods and using the concept of energy place, material place, and information place. Through the interface place in CpnHPN, the component based encapsulation is established, which enables the production and energy coupling system to be built, analyzed, and optimized on the multi-level framework. Considering the block and brief simulation for hybrid system, the CpnHPN model is simulated with Simulink/Stateflow. To illustrate the use of the proposed methodology, the application of CpnHPN in the energy optimization of chlorine balance system is provided. 展开更多
关键词 process INDUSTRY energy optimization PRODUCTION and energy COUPLING system PETRI NET modeling simulation
下载PDF
Investigation of Projectile Impact Behaviors of Graphene Aerogel Using Molecular Dynamics Simulations
12
作者 Xinyu Zhang Wenjie Xia +2 位作者 Yang Wang Liang Wang Xiaofeng Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3047-3061,共15页
Graphene aerogel(GA),as a novel solid material,has shown great potential in engineering applications due to its unique mechanical properties.In this study,the mechanical performance of GA under high-velocity projectil... Graphene aerogel(GA),as a novel solid material,has shown great potential in engineering applications due to its unique mechanical properties.In this study,the mechanical performance of GA under high-velocity projectile impacts is thoroughly investigated using full-atomic molecular dynamics(MD)simulations.The study results show that the porous structure and density are key factors determining the mechanical response of GA under impact loading.Specifically,the impact-induced penetration of the projectile leads to the collapse of the pore structure,causing stretching and subsequent rupture of covalent bonds in graphene sheets.Moreover,the effects of temperature on the mechanical performance of GA have been proven to be minimal,thereby highlighting the mechanical stability of GA over a wide range of temperatures.Finally,the energy absorption density(EAD)and energy absorption efficiency(EAE)metrics are adopted to assess the energy absorption capacity of GA during projectile penetration.The research findings of this work demonstrate the significant potential of GA for energy absorption applications. 展开更多
关键词 Graphene aerogel molecular dynamics simulation impact response energy absorption
下载PDF
Dendritic tip selection during solidification of alloys:Insights from phase-field simulations
13
作者 Qingjie Zhang Hui Xing +1 位作者 Lingjie Wang Wei Zhai 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期467-472,共6页
The effect of undercooling DT and the interface energy anisotropy parameter e4 on the shape of the equiaxed dendritic tip has been investigated by using a quantitative phase-field model for solidification of binary al... The effect of undercooling DT and the interface energy anisotropy parameter e4 on the shape of the equiaxed dendritic tip has been investigated by using a quantitative phase-field model for solidification of binary alloys.It was found that the tip radius r increases and the tip shape amplitude coefficient A4 decreases with the increase of the fitting range for all cases.The dendrite tip shape selection parameter sdecreases and then stabilizes with the increase of the fitting range,and sincreases with the increase of e4.The relationship between sand e4 follows a power-law function sµea 4,and a is independent of DT but dependent on the fitting range.Numerical results demonstrate that the predicted sis consistent with the curve of microscopic solvability theory(MST)for e4<0.02,and sobtained from our phase-field simulations is sensitive to the undercooling when e4 is fixed. 展开更多
关键词 phase-field simulations dendritic structure interface energy anisotropy tip shape selection parameter
下载PDF
Effect of elastic strain energy on grain growth and texture in AZ31 magnesium alloy by phase-field simulation 被引量:1
14
作者 何日 王明涛 +1 位作者 金剑锋 宗亚平 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第12期600-608,共9页
A phase-field model is modified to investigate the grain growth and texture evolution in AZ31 magnesium alloy during stressing at elevated temperatures. The order parameters are defined to represent a physical variabl... A phase-field model is modified to investigate the grain growth and texture evolution in AZ31 magnesium alloy during stressing at elevated temperatures. The order parameters are defined to represent a physical variable of grain orientation in terms of three angles in spatial coordinates so that the grain volume of different order parameters can be used to indicate the texture of the alloy. The stiffness tensors for different grains are different because of elastic anisotropy of the magnesium lattice. The tensor is defined by transforming the standard stiffness tensor according to the angle between the (0001) plane of a grain and the direction of applied stress. Therefore, different grains contribute to different amounts of work under applied stress. The simulation results are well-explained by using the limited experimental data available, and the texture results are in good agreement with the experimental observations. The simulation results reveal that the applied stress strongly influences AZ31 alloy grain growth and that the grain-growth rate increases with the applied stress increasing, particularly when the stress is less than 400 MPa. A parameter (△d) is introduced to characterize the degree of grain-size variation due to abnormal grain growth; the △d increases with applied stress increasing and becomes considerably large only when the stress is greater than 800 MPa. Moreover, the applied stress also results in an intensive texture of the 〈0001〉 axis parallel to the direction of compressive stress in AZ31 alloy after growing at elevated temperatures, only when the applied stress is greater than 500 MPa. 展开更多
关键词 phase-field simulation elastic energy TEXTURE magnesium alloy
下载PDF
NeTrainSim:a network-level simulator for modeling freight train longitudinal motion and energy consumption
15
作者 Ahmed S.Aredah Karim Fadhloun Hesham A.Rakha 《Railway Engineering Science》 EI 2024年第4期480-498,共19页
Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by ... Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by developing the Ne Train Sim simulator for heavy long-haul freight trains on a network of multiple intersecting tracks. The main objective of this simulator is to enable a comprehensive analysis of energy consumption and the associated carbon footprint for the entire train system. Four case studies were conducted to demonstrate the simulator's performance. The first case study validates the model by comparing Ne Train Sim output to empirical trajectory data. The results demonstrate that the simulated trajectory is precise enough to estimate the train energy consumption and carbon dioxide emissions. The second application demonstrates the train-following model considering six trains following each other. The results showcase the model ability to maintain safefollowing distances between successive trains. The next study highlights the simulator's ability to resolve train conflicts for different scenarios. Finally, the suitability of the Ne Train Sim for modeling realistic railroad networks is verified through the modeling of the entire US network and comparing alternative powertrains on the fleet energy consumption. 展开更多
关键词 Ne Train Sim Network train simulation Train longitudinal motion energy consumption Carbon footprint
下载PDF
Modeling and Simulation of an Organic Photovoltaic Cell: ITO/MoO3/CARAPA/PCBM/Alq3/Al with SCAPS
16
作者 Donafologo Soro Adama Sylla +5 位作者 Aboudramane Gbané Bamba Abdoulaye Franck Julia Mari Guaita Amal Bouich Siaka Toure Bernabé Marí 《Modeling and Numerical Simulation of Material Science》 2024年第3期79-96,共18页
Renewable energies are of major interest due to their inexhaustible and clean nature, with minimal impact on the environment. Numerous technological pathways exist in this field, each distinguished by the materials us... Renewable energies are of major interest due to their inexhaustible and clean nature, with minimal impact on the environment. Numerous technological pathways exist in this field, each distinguished by the materials used and their implementation principles. However, the cost-efficiency ratio remains a significant challenge for researchers. Currently, organic materials are gaining popularity due to their relatively low cost. However, their performance, particularly in terms of conversion efficiency, still requires improvements. This study focuses on optimizing the organic photovoltaic cell ITO/MoO3/CARAPA/PCBM/Alq3/Al using SCAPS. Several parameters were considered, such as layer thickness, recombination center density, and doping, to improve the cell’s performance. The optimal parameters obtained include an efficiency of 3%, a fill factor of 81.67%, an open-circuit voltage of 1610 mV, and a short-circuit current of 2.28 mA/cm2. The study also revealed that doping the phenyl-C61-butyric acid methyl ester (PCBM) layer has a significant impact on efficiency and short-circuit current, improving these parameters up to a certain point before causing degradation due to increased recombination. Furthermore, high doping of the tri (8-hydroxyquinoline) aluminum (Alq3) layer improves performance up to a critical threshold, after which degradation is also observed. In contrast, doping the molybdenum trioxide (MoO3) layer does not have a notable impact on cell performance. Regarding the thickness of the active Carapaprocera (CARAPA) and PCBM layers, non-optimal values lead to a decrease in performance. Similarly, an optimal thickness of the Alq3 layer significantly improves efficiency. These results highlight the importance of parameter optimization to maximize the efficiency of organic solar cells. 展开更多
关键词 Renewable Energie Solar Cells simulation Organic Materials PERFORMANCE
下载PDF
Research on Reduction of Solar Power Curtailment with Grid Connected Energy Storage System Based on Time-Series Production Simulation 被引量:1
17
作者 S. Ma Y. P. Xu +3 位作者 X. F. Li Y. F. Wang N. Zhang Y. R. Xu 《Energy and Power Engineering》 2017年第4期162-175,共14页
Due to the variable output of renewable energy (RE) generation, difficulties of dispatching RE for power system operators could not be avoided. One of possible solutions is the energy storage technology, especially th... Due to the variable output of renewable energy (RE) generation, difficulties of dispatching RE for power system operators could not be avoided. One of possible solutions is the energy storage technology, especially the battery storage system. The large-scale energy storage system is available to support power system reliable flexibility for load following and system frequency regulation. In this paper, the bottlenecks of large-scale solar power generation dispatching and operation in Qinghai grid are discussed, and a new PV-energy storage coordinated dispatching method is proposed for reduction of PV curtailment in Qinghai. Moreover, the validation based on the time-series production simulation is provided using real data from Qinghai. The results indicate that the proposed method can effectively decrease the curtailment of solar power and future vision of large-scale solar power coordinated operation with energy storage system is also presented. 展开更多
关键词 SOLAR POWER curtailment energy STORAGE time-series PRODUCTION simulation
下载PDF
Simulation research of energy management strategy for dual mode plug-in hybrid electrical vehicles 被引量:1
18
作者 李训明 liu hui +3 位作者 xin hui-bin yan zheng-jun zhang zhi-peng liu bei 《Journal of Chongqing University》 CAS 2017年第2期59-71,共13页
In this paper, a plug-in hybrid electrical vehicle(PHEV) is taken as the research object, and its dynamic performance and economic performance are taken as the research goals. Battery charge-sustaining(CS) period is d... In this paper, a plug-in hybrid electrical vehicle(PHEV) is taken as the research object, and its dynamic performance and economic performance are taken as the research goals. Battery charge-sustaining(CS) period is divided into power mode and economy mode. Energy management strategy designing methods of power mode and economy mode are proposed. Maximum velocity, acceleration performance and fuel consumption are simulated during the CS period in the AVL CRUISE simulation environment. The simulation results indicate that the maximum velocity and acceleration time of the power mode are better than those in the economy mode. Fuel consumption of the economy mode is better than that in the power mode. Fuel consumption of PHEV during the CS period is further improved by using the methods proposed in this paper, and this is meaningful for research and development of PHEV. 展开更多
关键词 plug-in hybrid electrical vehicle power mode eco mode energy management strategy model and simulation
下载PDF
Low-energy atomic displacement model of SRIM simulations 被引量:1
19
作者 Sheng-Li Chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第11期15-24,共10页
Radiation-induced atomic displacement damage is a pressing issue for materials.The present work investigates the number of atomic displacements using the Primary Knock-on Atom (PKA) energy E_(PKA)and threshold displac... Radiation-induced atomic displacement damage is a pressing issue for materials.The present work investigates the number of atomic displacements using the Primary Knock-on Atom (PKA) energy E_(PKA)and threshold displacement energy E_(d)as two major parameters via lowenergy SRIM Binary Collision Approximation (BCA) full cascade simulations.It is found that the number of atomic displacements cannot be uniquely determined by E_(PKA)/E_(d )or E_(D) /E_(d)(E_(D) refers to the damage energy) when the energy is comparable with E_(d).The effective energy E_(D,eff)proposed in the present work allows to describing the number of atomic displacements for most presently studied monatomic materials by the unique variable E_(D,eff)/E_(d).Nevertheless,it is noteworthy that the BCA simulation damage energy depends on E_(d),whereas the currently used analytical method is independent of E_(d).A more accurate analytical damage energy function should be determined by including the dependence on E_(d). 展开更多
关键词 Atomic displacement Damage energy Effective energy SRIM neutron cascade simulations
下载PDF
Numerical Simulation of Heat Transfer Process and Heat Loss Analysis in Siemens CVD Reduction Furnaces
20
作者 Kunrong Shen Wanchun Jin Jin Wang 《Frontiers in Heat and Mass Transfer》 EI 2024年第5期1361-1379,共19页
The modified Siemens method is the dominant process for the production of polysilicon,yet it is characterised by high energy consumption.Two models of laboratory-grade Siemens reduction furnace and 12 pairs of rods in... The modified Siemens method is the dominant process for the production of polysilicon,yet it is characterised by high energy consumption.Two models of laboratory-grade Siemens reduction furnace and 12 pairs of rods industrial-grade Siemens chemical vapor deposition(CVD)reduction furnace were established,and the effects of factors such as the diameter of silicon rods,the surface temperature of silicon rods,the air inlet velocity and temperature on the heat transfer process inside the reduction furnace were investigated by numerical simulation.The results show that the convective and radiant heat losses in the furnace increased with the diameter of the silicon rods.Furthermore,the radiant heat loss of the inner and outer rings of silicon rods was inconsistent for the industrial-grade reduction furnace.As the surface temperature of the silicon rods increases,the convective heat loss in the furnace increases,while the radiative heat loss remains relatively constant.When the inlet temperature and inlet velocity increase,the convective heat loss decreases,while the radiant heat loss remains relatively constant.Furthermore,the furnace wall surface emissivity increases,resulting in a significant increase in the amount of radiant heat loss in the furnace.In practice,this can be mitigated by polishing or adding coatings to reduce the furnace wall surface emissivity. 展开更多
关键词 Modified siemens method polysilicon reduction furnace energy consumption numerical simulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部