期刊文献+
共找到744篇文章
< 1 2 38 >
每页显示 20 50 100
Data Secure Storage Mechanism for IIoT Based on Blockchain 被引量:1
1
作者 Jin Wang Guoshu Huang +2 位作者 R.Simon Sherratt Ding Huang Jia Ni 《Computers, Materials & Continua》 SCIE EI 2024年第3期4029-4048,共20页
With the development of Industry 4.0 and big data technology,the Industrial Internet of Things(IIoT)is hampered by inherent issues such as privacy,security,and fault tolerance,which pose certain challenges to the rapi... With the development of Industry 4.0 and big data technology,the Industrial Internet of Things(IIoT)is hampered by inherent issues such as privacy,security,and fault tolerance,which pose certain challenges to the rapid development of IIoT.Blockchain technology has immutability,decentralization,and autonomy,which can greatly improve the inherent defects of the IIoT.In the traditional blockchain,data is stored in a Merkle tree.As data continues to grow,the scale of proofs used to validate it grows,threatening the efficiency,security,and reliability of blockchain-based IIoT.Accordingly,this paper first analyzes the inefficiency of the traditional blockchain structure in verifying the integrity and correctness of data.To solve this problem,a new Vector Commitment(VC)structure,Partition Vector Commitment(PVC),is proposed by improving the traditional VC structure.Secondly,this paper uses PVC instead of the Merkle tree to store big data generated by IIoT.PVC can improve the efficiency of traditional VC in the process of commitment and opening.Finally,this paper uses PVC to build a blockchain-based IIoT data security storage mechanism and carries out a comparative analysis of experiments.This mechanism can greatly reduce communication loss and maximize the rational use of storage space,which is of great significance for maintaining the security and stability of blockchain-based IIoT. 展开更多
关键词 blockchain IIoT data storage cryptographic commitment
下载PDF
Enhancing IoT Data Security with Lightweight Blockchain and Okamoto Uchiyama Homomorphic Encryption
2
作者 Mohanad A.Mohammed Hala B.Abdul Wahab 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1731-1748,共18页
Blockchain technology has garnered significant attention from global organizations and researchers due to its potential as a solution for centralized system challenges.Concurrently,the Internet of Things(IoT)has revol... Blockchain technology has garnered significant attention from global organizations and researchers due to its potential as a solution for centralized system challenges.Concurrently,the Internet of Things(IoT)has revolutionized the Fourth Industrial Revolution by enabling interconnected devices to offer innovative services,ultimately enhancing human lives.This paper presents a new approach utilizing lightweight blockchain technology,effectively reducing the computational burden typically associated with conventional blockchain systems.By integrating this lightweight blockchain with IoT systems,substantial reductions in implementation time and computational complexity can be achieved.Moreover,the paper proposes the utilization of the Okamoto Uchiyama encryption algorithm,renowned for its homomorphic characteristics,to reinforce the privacy and security of IoT-generated data.The integration of homomorphic encryption and blockchain technology establishes a secure and decentralized platformfor storing and analyzing sensitive data of the supply chain data.This platformfacilitates the development of some business models and empowers decentralized applications to perform computations on encrypted data while maintaining data privacy.The results validate the robust security of the proposed system,comparable to standard blockchain implementations,leveraging the distinctive homomorphic attributes of the Okamoto Uchiyama algorithm and the lightweight blockchain paradigm. 展开更多
关键词 blockchain IOT integration of IoT and blockchain consensus algorithm Okamoto Uchiyama homomorphic encryption lightweight blockchain
下载PDF
On Designs of Decentralized Reputation Management for Permissioned Blockchain Networks
3
作者 Jinyu Chen Long Shi +2 位作者 Qisheng Huang Taotao Wang Daojing He 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1755-1773,共19页
In permissioned blockchain networks,the Proof of Authority(PoA)consensus,which uses the election of authorized nodes to validate transactions and blocks,has beenwidely advocated thanks to its high transaction throughp... In permissioned blockchain networks,the Proof of Authority(PoA)consensus,which uses the election of authorized nodes to validate transactions and blocks,has beenwidely advocated thanks to its high transaction throughput and fault tolerance.However,PoA suffers from the drawback of centralization dominated by a limited number of authorized nodes and the lack of anonymity due to the round-robin block proposal mechanism.As a result,traditional PoA is vulnerable to a single point of failure that compromises the security of the blockchain network.To address these issues,we propose a novel decentralized reputation management mechanism for permissioned blockchain networks to enhance security,promote liveness,and mitigate centralization while retaining the same throughput as traditional PoA.This paper aims to design an off-chain reputation evaluation and an on-chain reputation-aided consensus.First,we evaluate the nodes’reputation in the context of the blockchain networks and make the reputation globally verifiable through smart contracts.Second,building upon traditional PoA,we propose a reputation-aided PoA(rPoA)consensus to enhance securitywithout sacrificing throughput.In particular,rPoA can incentivize nodes to autonomously form committees based on reputation authority,which prevents block generation from being tracked through the randomness of reputation variation.Moreover,we develop a reputation-aided fork-choice rule for rPoA to promote the network’s liveness.Finally,experimental results show that the proposed rPoA achieves higher security performance while retaining transaction throughput compared to traditional PoA. 展开更多
关键词 blockchain reputation management POA THROUGHPUT SECURITY DECENTRALIZATION
下载PDF
For Mega-Constellations: Edge Computing and Safety Management Based on Blockchain Technology
4
作者 Zhen Zhang Bing Guo Chengjie Li 《China Communications》 SCIE CSCD 2024年第2期59-73,共15页
In mega-constellation Communication Systems, efficient routing algorithms and data transmission technologies are employed to ensure fast and reliable data transfer. However, the limited computational resources of sate... In mega-constellation Communication Systems, efficient routing algorithms and data transmission technologies are employed to ensure fast and reliable data transfer. However, the limited computational resources of satellites necessitate the use of edge computing to enhance secure communication.While edge computing reduces the burden on cloud computing, it introduces security and reliability challenges in open satellite communication channels. To address these challenges, we propose a blockchain architecture specifically designed for edge computing in mega-constellation communication systems. This architecture narrows down the consensus scope of the blockchain to meet the requirements of edge computing while ensuring comprehensive log storage across the network. Additionally, we introduce a reputation management mechanism for nodes within the blockchain, evaluating their trustworthiness, workload, and efficiency. Nodes with higher reputation scores are selected to participate in tasks and are appropriately incentivized. Simulation results demonstrate that our approach achieves a task result reliability of 95% while improving computational speed. 展开更多
关键词 blockchain consensus mechanism edge computing mega-constellation reputation management
下载PDF
A Framework for Enhancing Privacy and Anonymity in Blockchain-Enabled IoT Devices
5
作者 Muhammad Saad Muhammad Raheel Bhutta +1 位作者 Jongik Kim Tae-Sun Chung 《Computers, Materials & Continua》 SCIE EI 2024年第3期4263-4282,共20页
With the increase in IoT(Internet of Things)devices comes an inherent challenge of security.In the world today,privacy is the prime concern of every individual.Preserving one’s privacy and keeping anonymity throughou... With the increase in IoT(Internet of Things)devices comes an inherent challenge of security.In the world today,privacy is the prime concern of every individual.Preserving one’s privacy and keeping anonymity throughout the system is a desired functionality that does not come without inevitable trade-offs like scalability and increased complexity and is always exceedingly difficult to manage.The challenge is keeping confidentiality and continuing to make the person innominate throughout the system.To address this,we present our proposed architecture where we manage IoT devices using blockchain technology.Our proposed architecture works on and off blockchain integrated with the closed-circuit television(CCTV)security camera fixed at the rental property.In this framework,the CCTV security camera feed is redirected towards the owner and renter based on the smart contract conditions.One entity(owner or renter)can see the CCTV security camera feed at one time.There is no third-party dependence except for the CCTV security camera deployment phase.Our contributions include the proposition of framework architecture,a novel smart contract algorithm,and the modification to the ring signatures leveraging an existing cryptographic technique.Analyses are made based on different systems’security and key management areas.In an empirical study,our proposed algorithm performed better in key generation,proof generation,and verification times.By comparing similar existing schemes,we have shown the proposed architectures’advantages.Until now,we have developed this system for a specific area in the real world.However,this system is scalable and applicable to other areas like healthcare monitoring systems,which is part of our future work. 展开更多
关键词 PRIVACY ANONYMITY blockchain IOT smart contracts
下载PDF
Blockchain-Enabled Cybersecurity Provision for Scalable Heterogeneous Network:A Comprehensive Survey
6
作者 Md.Shohidul Islam Md.Arafatur Rahman +3 位作者 Mohamed Ariff Bin Ameedeen Husnul Ajra Zahian Binti Ismail Jasni Mohamad Zain 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期43-123,共81页
Blockchain-enabled cybersecurity system to ensure and strengthen decentralized digital transaction is gradually gaining popularity in the digital era for various areas like finance,transportation,healthcare,education,... Blockchain-enabled cybersecurity system to ensure and strengthen decentralized digital transaction is gradually gaining popularity in the digital era for various areas like finance,transportation,healthcare,education,and supply chain management.Blockchain interactions in the heterogeneous network have fascinated more attention due to the authentication of their digital application exchanges.However,the exponential development of storage space capabilities across the blockchain-based heterogeneous network has become an important issue in preventing blockchain distribution and the extension of blockchain nodes.There is the biggest challenge of data integrity and scalability,including significant computing complexity and inapplicable latency on regional network diversity,operating system diversity,bandwidth diversity,node diversity,etc.,for decision-making of data transactions across blockchain-based heterogeneous networks.Data security and privacy have also become the main concerns across the heterogeneous network to build smart IoT ecosystems.To address these issues,today’s researchers have explored the potential solutions of the capability of heterogeneous network devices to perform data transactions where the system stimulates their integration reliably and securely with blockchain.The key goal of this paper is to conduct a state-of-the-art and comprehensive survey on cybersecurity enhancement using blockchain in the heterogeneous network.This paper proposes a full-fledged taxonomy to identify the main obstacles,research gaps,future research directions,effective solutions,andmost relevant blockchain-enabled cybersecurity systems.In addition,Blockchain based heterogeneous network framework with cybersecurity is proposed in this paper tomeet the goal of maintaining optimal performance data transactions among organizations.Overall,this paper provides an in-depth description based on the critical analysis to overcome the existing work gaps for future research where it presents a potential cybersecurity design with key requirements of blockchain across a heterogeneous network. 展开更多
关键词 blockchain CYBERSECURITY data transaction diversity heterogeneous
下载PDF
Redundant Data Detection and Deletion to Meet Privacy Protection Requirements in Blockchain-Based Edge Computing Environment
7
作者 Zhang Lejun Peng Minghui +6 位作者 Su Shen Wang Weizheng Jin Zilong Su Yansen Chen Huiling Guo Ran Sergey Gataullin 《China Communications》 SCIE CSCD 2024年第3期149-159,共11页
With the rapid development of information technology,IoT devices play a huge role in physiological health data detection.The exponential growth of medical data requires us to reasonably allocate storage space for clou... With the rapid development of information technology,IoT devices play a huge role in physiological health data detection.The exponential growth of medical data requires us to reasonably allocate storage space for cloud servers and edge nodes.The storage capacity of edge nodes close to users is limited.We should store hotspot data in edge nodes as much as possible,so as to ensure response timeliness and access hit rate;However,the current scheme cannot guarantee that every sub-message in a complete data stored by the edge node meets the requirements of hot data;How to complete the detection and deletion of redundant data in edge nodes under the premise of protecting user privacy and data dynamic integrity has become a challenging problem.Our paper proposes a redundant data detection method that meets the privacy protection requirements.By scanning the cipher text,it is determined whether each sub-message of the data in the edge node meets the requirements of the hot data.It has the same effect as zero-knowledge proof,and it will not reveal the privacy of users.In addition,for redundant sub-data that does not meet the requirements of hot data,our paper proposes a redundant data deletion scheme that meets the dynamic integrity of the data.We use Content Extraction Signature(CES)to generate the remaining hot data signature after the redundant data is deleted.The feasibility of the scheme is proved through safety analysis and efficiency analysis. 展开更多
关键词 blockchain data integrity edge computing privacy protection redundant data
下载PDF
Blockchain-Based MCS Detection Framework of Abnormal Spectrum Usage for Satellite Spectrum Sharing Scenario
8
作者 Ning Yang Heng Wang +3 位作者 Jingming Hu Bangning Zhang Daoxing Guo Yuan Liu 《China Communications》 SCIE CSCD 2024年第2期32-48,共17页
In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit... In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit satellites, and the directional nature of their signals, traditional monitoring methods are no longer suitable, especially in the case of multiple power level. Mobile crowdsensing(MCS), as a new technology, can make full use of idle resources to complete a variety of perceptual tasks. However, traditional MCS heavily relies on a centralized server and is vulnerable to single point of failure attacks. Therefore, we replace the original centralized server with a blockchain-based distributed service provider to enable its security. Therefore, in this work, we propose a blockchain-based MCS framework, in which we explain in detail how this framework can achieve abnormal frequency behavior monitoring in an inter-satellite spectrum sharing system. Then, under certain false alarm probability, we propose an abnormal spectrum detection algorithm based on mixed hypothesis test to maximize detection probability in single power level and multiple power level scenarios, respectively. Finally, a Bad out of Good(BooG) detector is proposed to ease the computational pressure on the blockchain nodes. Simulation results show the effectiveness of the proposed framework. 展开更多
关键词 blockchain hypothesis test mobile crowdsensing satellite communication spectrum sharing
下载PDF
VKFQ:A Verifiable Keyword Frequency Query Framework with Local Differential Privacy in Blockchain
9
作者 Youlin Ji Bo Yin Ke Gu 《Computers, Materials & Continua》 SCIE EI 2024年第3期4205-4223,共19页
With its untameable and traceable properties,blockchain technology has been widely used in the field of data sharing.How to preserve individual privacy while enabling efficient data queries is one of the primary issue... With its untameable and traceable properties,blockchain technology has been widely used in the field of data sharing.How to preserve individual privacy while enabling efficient data queries is one of the primary issues with secure data sharing.In this paper,we study verifiable keyword frequency(KF)queries with local differential privacy in blockchain.Both the numerical and the keyword attributes are present in data objects;the latter are sensitive and require privacy protection.However,prior studies in blockchain have the problem of trilemma in privacy protection and are unable to handle KF queries.We propose an efficient framework that protects data owners’privacy on keyword attributes while enabling quick and verifiable query processing for KF queries.The framework computes an estimate of a keyword’s frequency and is efficient in query time and verification object(VO)size.A utility-optimized local differential privacy technique is used for privacy protection.The data owner adds noise locally into data based on local differential privacy so that the attacker cannot infer the owner of the keywords while keeping the difference in the probability distribution of the KF within the privacy budget.We propose the VB-cm tree as the authenticated data structure(ADS).The VB-cm tree combines the Verkle tree and the Count-Min sketch(CM-sketch)to lower the VO size and query time.The VB-cm tree uses the vector commitment to verify the query results.The fixed-size CM-sketch,which summarizes the frequency of multiple keywords,is used to estimate the KF via hashing operations.We conduct an extensive evaluation of the proposed framework.The experimental results show that compared to theMerkle B+tree,the query time is reduced by 52.38%,and the VO size is reduced by more than one order of magnitude. 展开更多
关键词 SECURITY data sharing blockchain data query privacy protection
下载PDF
Joint Optimization of Energy Consumption and Network Latency in Blockchain-Enabled Fog Computing Networks
10
作者 Huang Xiaoge Yin Hongbo +3 位作者 Cao Bin Wang Yongsheng Chen Qianbin Zhang Jie 《China Communications》 SCIE CSCD 2024年第4期104-119,共16页
Fog computing is considered as a solution to accommodate the emergence of booming requirements from a large variety of resource-limited Internet of Things(IoT)devices.To ensure the security of private data,in this pap... Fog computing is considered as a solution to accommodate the emergence of booming requirements from a large variety of resource-limited Internet of Things(IoT)devices.To ensure the security of private data,in this paper,we introduce a blockchain-enabled three-layer device-fog-cloud heterogeneous network.A reputation model is proposed to update the credibility of the fog nodes(FN),which is used to select blockchain nodes(BN)from FNs to participate in the consensus process.According to the Rivest-Shamir-Adleman(RSA)encryption algorithm applied to the blockchain system,FNs could verify the identity of the node through its public key to avoid malicious attacks.Additionally,to reduce the computation complexity of the consensus algorithms and the network overhead,we propose a dynamic offloading and resource allocation(DORA)algorithm and a reputation-based democratic byzantine fault tolerant(R-DBFT)algorithm to optimize the offloading decisions and decrease the number of BNs in the consensus algorithm while ensuring the network security.Simulation results demonstrate that the proposed algorithm could efficiently reduce the network overhead,and obtain a considerable performance improvement compared to the related algorithms in the previous literature. 展开更多
关键词 blockchain energy consumption fog computing network Internet of Things LATENCY
下载PDF
Mitigating Blackhole and Greyhole Routing Attacks in Vehicular Ad Hoc Networks Using Blockchain Based Smart Contracts
11
作者 Abdulatif Alabdulatif Mada Alharbi +1 位作者 Abir Mchergui Tarek Moulahi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期2005-2021,共17页
The rapid increase in vehicle traffic volume in modern societies has raised the need to develop innovative solutions to reduce traffic congestion and enhance traffic management efficiency.Revolutionary advanced techno... The rapid increase in vehicle traffic volume in modern societies has raised the need to develop innovative solutions to reduce traffic congestion and enhance traffic management efficiency.Revolutionary advanced technology,such as Intelligent Transportation Systems(ITS),enables improved traffic management,helps eliminate congestion,and supports a safer environment.ITS provides real-time information on vehicle traffic and transportation systems that can improve decision-making for road users.However,ITS suffers from routing issues at the network layer when utilising Vehicular Ad Hoc Networks(VANETs).This is because each vehicle plays the role of a router in this network,which leads to a complex vehicle communication network,causing issues such as repeated link breakages between vehicles resulting from the mobility of the network and rapid topological variation.This may lead to loss or delay in packet transmissions;this weakness can be exploited in routing attacks,such as black-hole and gray-hole attacks,that threaten the availability of ITS services.In this paper,a Blockchain-based smart contracts model is proposed to offer convenient and comprehensive security mechanisms,enhancing the trustworthiness between vehicles.Self-Classification Blockchain-Based Contracts(SCBC)and Voting-Classification Blockchain-Based Contracts(VCBC)are utilised in the proposed protocol.The results show that VCBC succeeds in attaining better results in PDR and TP performance even in the presence of Blackhole and Grayhole attacks. 展开更多
关键词 blockchain data privacy machine learning routing attacks smart contract VANET
下载PDF
A Blockchain-Based Game Approach to Multi-Microgrid Energy Dispatch
12
作者 Zhikang Wang Chengxuan Wang +2 位作者 Wendi Wu Cheng Sun Zhengtian Wu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期845-863,共19页
As the current global environment is deteriorating,distributed renewable energy is gradually becoming an important member of the energy internet.Blockchain,as a decentralized distributed ledger with decentralization,t... As the current global environment is deteriorating,distributed renewable energy is gradually becoming an important member of the energy internet.Blockchain,as a decentralized distributed ledger with decentralization,traceability and tamper-proof features,is an importantway to achieve efficient consumption andmulti-party supply of new energy.In this article,we establish a blockchain-based mathematical model of multiple microgrids and microgrid aggregators’revenue,consider the degree of microgrid users’preference for electricity thus increasing users’reliance on the blockchainmarket,and apply the one-master-multiple-slave Stackelberg game theory to solve the energy dispatching strategy when each market entity pursues the maximum revenue.The simulation results show that the blockchain-based dynamic game of the multi-microgrid market can effectively increase the revenue of both microgrids and aggregators and improve the utilization of renewable energy. 展开更多
关键词 Multi-microgrid blockchain stackelberg game energy scheduling
下载PDF
A General Framework for Intelligent IoT Data Acquisition and Sharing in an Untrusted Environment Based on Blockchain
13
作者 Lu Yin Xue Yongtao +4 位作者 Li Qingyuan Wu Luocheng Li Taosen Yang Peipei Zhu Hongbo 《China Communications》 SCIE CSCD 2024年第3期137-148,共12页
Traditional Io T systems suffer from high equipment management costs and difficulty in trustworthy data sharing caused by centralization.Blockchain provides a feasible research direction to solve these problems. The m... Traditional Io T systems suffer from high equipment management costs and difficulty in trustworthy data sharing caused by centralization.Blockchain provides a feasible research direction to solve these problems. The main challenge at this stage is to integrate the blockchain from the resourceconstrained Io T devices and ensure the data of Io T system is credible. We provide a general framework for intelligent Io T data acquisition and sharing in an untrusted environment based on the blockchain, where gateways become Oracles. A distributed Oracle network based on Byzantine Fault Tolerant algorithm is used to provide trusted data for the blockchain to make intelligent Io T data trustworthy. An aggregation contract is deployed to collect data from various Oracle and share the credible data to all on-chain users. We also propose a gateway data aggregation scheme based on the REST API event publishing/subscribing mechanism which uses SQL to achieve flexible data aggregation. The experimental results show that the proposed scheme can alleviate the problem of limited performance of Io T equipment, make data reliable, and meet the diverse data needs on the chain. 展开更多
关键词 blockchain data sharing Internet of Things ORACLE
下载PDF
A Blockchain and CP-ABE Based Access Control Scheme with Fine-Grained Revocation of Attributes in Cloud Health
14
作者 Ye Lu Tao Feng +1 位作者 Chunyan Liu Wenbo Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第2期2787-2811,共25页
The Access control scheme is an effective method to protect user data privacy.The access control scheme based on blockchain and ciphertext policy attribute encryption(CP–ABE)can solve the problems of single—point of... The Access control scheme is an effective method to protect user data privacy.The access control scheme based on blockchain and ciphertext policy attribute encryption(CP–ABE)can solve the problems of single—point of failure and lack of trust in the centralized system.However,it also brings new problems to the health information in the cloud storage environment,such as attribute leakage,low consensus efficiency,complex permission updates,and so on.This paper proposes an access control scheme with fine-grained attribute revocation,keyword search,and traceability of the attribute private key distribution process.Blockchain technology tracks the authorization of attribute private keys.The credit scoring method improves the Raft protocol in consensus efficiency.Besides,the interplanetary file system(IPFS)addresses the capacity deficit of blockchain.Under the premise of hiding policy,the research proposes a fine-grained access control method based on users,user attributes,and file structure.It optimizes the data-sharing mode.At the same time,Proxy Re-Encryption(PRE)technology is used to update the access rights.The proposed scheme proved to be secure.Comparative analysis and experimental results show that the proposed scheme has higher efficiency and more functions.It can meet the needs of medical institutions. 展开更多
关键词 blockchain access-control CP-ABE cloud health
下载PDF
An Encode-and CRT-Based Scalability Scheme for Optimizing Transmission in Blockchain
15
作者 Qianqi Sun Fenhua Bai 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1733-1754,共22页
Blockchain technology has witnessed a burgeoning integration into diverse realms of economic and societal development.Nevertheless,scalability challenges,characterized by diminished broadcast efficiency,heightened com... Blockchain technology has witnessed a burgeoning integration into diverse realms of economic and societal development.Nevertheless,scalability challenges,characterized by diminished broadcast efficiency,heightened communication overhead,and escalated storage costs,have significantly constrained the broad-scale application of blockchain.This paper introduces a novel Encode-and CRT-based Scalability Scheme(ECSS),meticulously refined to enhance both block broadcasting and storage.Primarily,ECSS categorizes nodes into distinct domains,thereby reducing the network diameter and augmenting transmission efficiency.Secondly,ECSS streamlines block transmission through a compact block protocol and robust RS coding,which not only reduces the size of broadcasted blocks but also ensures transmission reliability.Finally,ECSS utilizes the Chinese remainder theorem,designating the block body as the compression target and mapping it to multiple modules to achieve efficient storage,thereby alleviating the storage burdens on nodes.To evaluate ECSS’s performance,we established an experimental platformand conducted comprehensive assessments.Empirical results demonstrate that ECSS attains superior network scalability and stability,reducing communication overhead by an impressive 72% and total storage costs by a substantial 63.6%. 展开更多
关键词 blockchain network coding block compression transmission optimization
下载PDF
Joint Task Allocation and Resource Optimization for Blockchain Enabled Collaborative Edge Computing
16
作者 Xu Wenjing Wang Wei +2 位作者 Li Zuguang Wu Qihui Wang Xianbin 《China Communications》 SCIE CSCD 2024年第4期218-229,共12页
Collaborative edge computing is a promising direction to handle the computation intensive tasks in B5G wireless networks.However,edge computing servers(ECSs)from different operators may not trust each other,and thus t... Collaborative edge computing is a promising direction to handle the computation intensive tasks in B5G wireless networks.However,edge computing servers(ECSs)from different operators may not trust each other,and thus the incentives for collaboration cannot be guaranteed.In this paper,we propose a consortium blockchain enabled collaborative edge computing framework,where users can offload computing tasks to ECSs from different operators.To minimize the total delay of users,we formulate a joint task offloading and resource optimization problem,under the constraint of the computing capability of each ECS.We apply the Tammer decomposition method and heuristic optimization algorithms to obtain the optimal solution.Finally,we propose a reputation based node selection approach to facilitate the consensus process,and also consider a completion time based primary node selection to avoid monopolization of certain edge node and enhance the security of the blockchain.Simulation results validate the effectiveness of the proposed algorithm,and the total delay can be reduced by up to 40%compared with the non-cooperative case. 展开更多
关键词 blockchain collaborative edge computing resource optimization task allocation
下载PDF
A Blockchain-Based Access Control Scheme for Reputation Value Attributes of the Internet of Things
17
作者 Hongliang Tian Junyuan Tian 《Computers, Materials & Continua》 SCIE EI 2024年第1期1297-1310,共14页
The Internet of Things(IoT)access controlmechanism may encounter security issues such as single point of failure and data tampering.To address these issues,a blockchain-based IoT reputation value attribute access cont... The Internet of Things(IoT)access controlmechanism may encounter security issues such as single point of failure and data tampering.To address these issues,a blockchain-based IoT reputation value attribute access control scheme is proposed.Firstly,writing the reputation value as an attribute into the access control policy,and then deploying the access control policy in the smart contract of the blockchain system can enable the system to provide more fine-grained access control;Secondly,storing a large amount of resources fromthe Internet of Things in Inter Planetary File System(IPFS)to improve system throughput;Finally,map resource access operations to qualification tokens to improve the performance of the access control system.Complete simulation experiments based on the Hyperledger Fabric platform.Fromthe simulation experimental results,it can be seen that the access control system can achieve more fine-grained and dynamic access control while maintaining high throughput and low time delay,providing sufficient reliability and security for access control of IoT devices. 展开更多
关键词 blockchain IOT access control Hyperledger Fabric
下载PDF
A Novel High-Efficiency Transaction Verification Scheme for Blockchain Systems
18
作者 Jingyu Zhang Pian Zhou +3 位作者 Jin Wang Osama Alfarraj Saurabh Singh Min Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1613-1633,共21页
Blockchain can realize the reliable storage of a large amount of data that is chronologically related and verifiable within the system.This technology has been widely used and has developed rapidly in big data systems... Blockchain can realize the reliable storage of a large amount of data that is chronologically related and verifiable within the system.This technology has been widely used and has developed rapidly in big data systems across various fields.An increasing number of users are participating in application systems that use blockchain as their underlying architecture.As the number of transactions and the capital involved in blockchain grow,ensuring information security becomes imperative.Addressing the verification of transactional information security and privacy has emerged as a critical challenge.Blockchain-based verification methods can effectively eliminate the need for centralized third-party organizations.However,the efficiency of nodes in storing and verifying blockchain data faces unprecedented challenges.To address this issue,this paper introduces an efficient verification scheme for transaction security.Initially,it presents a node evaluation module to estimate the activity level of user nodes participating in transactions,accompanied by a probabilistic analysis for all transactions.Subsequently,this paper optimizes the conventional transaction organization form,introduces a heterogeneous Merkle tree storage structure,and designs algorithms for constructing these heterogeneous trees.Theoretical analyses and simulation experiments conclusively demonstrate the superior performance of this scheme.When verifying the same number of transactions,the heterogeneous Merkle tree transmits less data and is more efficient than traditional methods.The findings indicate that the heterogeneous Merkle tree structure is suitable for various blockchain applications,including the Internet of Things.This scheme can markedly enhance the efficiency of information verification and bolster the security of distributed systems. 展开更多
关键词 blockchain architecture transaction verification information security heterogeneous Merkle tree distributed systems
下载PDF
Electricity Carbon Quota Trading Scheme based on Certificateless Signature and Blockchain
19
作者 Xiaodong Yang Runze Diao +2 位作者 Tao Liu Haoqi Wen Caifen Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1695-1712,共18页
The carbon tradingmarket can promote“carbon peaking”and“carbon neutrality”at low cost,but carbon emission quotas face attacks such as data forgery,tampering,counterfeiting,and replay in the electricity trading mar... The carbon tradingmarket can promote“carbon peaking”and“carbon neutrality”at low cost,but carbon emission quotas face attacks such as data forgery,tampering,counterfeiting,and replay in the electricity trading market.Certificateless signatures are a new cryptographic technology that can address traditional cryptography’s general essential certificate requirements and avoid the problem of crucial escrowbased on identity cryptography.However,most certificateless signatures still suffer fromvarious security flaws.We present a secure and efficient certificateless signing scheme by examining the security of existing certificateless signature schemes.To ensure the integrity and verifiability of electricity carbon quota trading,we propose an electricity carbon quota trading scheme based on a certificateless signature and blockchain.Our scheme utilizes certificateless signatures to ensure the validity and nonrepudiation of transactions and adopts blockchain technology to achieve immutability and traceability in electricity carbon quota transactions.In addition,validating electricity carbon quota transactions does not require time-consuming bilinear pairing operations.The results of the analysis indicate that our scheme meets existential unforgeability under adaptive selective message attacks,offers conditional identity privacy protection,resists replay attacks,and demonstrates high computing and communication performance. 展开更多
关键词 Electricity carbon trading certificateless signature blockchain forgery attack carbon quota
下载PDF
An Energy Trading Method Based on Alliance Blockchain and Multi-Signature
20
作者 Hongliang Tian Jiaming Wang 《Computers, Materials & Continua》 SCIE EI 2024年第2期1611-1629,共19页
Blockchain,known for its secure encrypted ledger,has garnered attention in financial and data transfer realms,including the field of energy trading.However,the decentralized nature and identity anonymity of user nodes... Blockchain,known for its secure encrypted ledger,has garnered attention in financial and data transfer realms,including the field of energy trading.However,the decentralized nature and identity anonymity of user nodes raise uncertainties in energy transactions.The broadcast consensus authentication slows transaction speeds,and frequent single-point transactions in multi-node settings pose key exposure risks without protective measures during user signing.To address these,an alliance blockchain scheme is proposed,reducing the resource-intensive identity verification among nodes.It integrates multi-signature functionality to fortify user resources and transac-tion security.A novel multi-signature process within this framework involves neutral nodes established through central nodes.These neutral nodes participate in multi-signature’s signing and verification,ensuring user identity and transaction content privacy.Reducing interactions among user nodes enhances transaction efficiency by minimizing communication overhead during verification and consensus stages.Rigorous assessments on reliability and operational speed highlight superior security performance,resilient against conventional attack vectors.Simulation shows that compared to traditional solutions,this scheme has advantages in terms of running speed.In conclusion,the alliance blockchain framework introduces a novel approach to tackle blockchain’s limitations in energy transactions.The integrated multi-signature process,involving neutral nodes,significantly enhances security and privacy.The scheme’s efficiency,validated through analytical assessments and simulations,indicates robustness against security threats and improved transactional speeds.This research underscores the potential for improved security and efficiency in blockchain-enabled energy trading systems. 展开更多
关键词 Alliance blockchain MULTI-SIGNATURE energy trading security performance transaction efficiency
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部