Block multiple measurement vectors (BMMV) is a reconstruction algorithm that can be used to recover the support of block K-joint sparse matrix X from Y = ΨX + V. In this paper, we propose a sufficient condition for a...Block multiple measurement vectors (BMMV) is a reconstruction algorithm that can be used to recover the support of block K-joint sparse matrix X from Y = ΨX + V. In this paper, we propose a sufficient condition for accurate support recovery of the block K-joint sparse matrix via the BMMV algorithm in the noisy case. Furthermore, we show the optimality of the condition we proposed in the absence of noise when the problem reduces to single measurement vector case.展开更多
Medical imaging plays a key role within modern hospital management systems for diagnostic purposes.Compression methodologies are extensively employed to mitigate storage demands and enhance transmission speed,all whil...Medical imaging plays a key role within modern hospital management systems for diagnostic purposes.Compression methodologies are extensively employed to mitigate storage demands and enhance transmission speed,all while upholding image quality.Moreover,an increasing number of hospitals are embracing cloud computing for patient data storage,necessitating meticulous scrutiny of server security and privacy protocols.Nevertheless,considering the widespread availability of multimedia tools,the preservation of digital data integrity surpasses the significance of compression alone.In response to this concern,we propose a secure storage and transmission solution for compressed medical image sequences,such as ultrasound images,utilizing a motion vector watermarking scheme.The watermark is generated employing an error-correcting code known as Bose-Chaudhuri-Hocquenghem(BCH)and is subsequently embedded into the compressed sequence via block-based motion vectors.In the process of watermark embedding,motion vectors are selected based on their magnitude and phase angle.When embedding watermarks,no specific spatial area,such as a region of interest(ROI),is used in the images.The embedding of watermark bits is dependent on motion vectors.Although reversible watermarking allows the restoration of the original image sequences,we use the irreversible watermarking method.The reason for this is that the use of reversible watermarks may impede the claims of ownership and legal rights.The restoration of original data or images may call into question ownership or other legal claims.The peak signal-to-noise ratio(PSNR)and structural similarity index(SSIM)serve as metrics for evaluating the watermarked image quality.Across all images,the PSNR value exceeds 46 dB,and the SSIM value exceeds 0.92.Experimental results substantiate the efficacy of the proposed technique in preserving data integrity.展开更多
There are a lot of security issues in block cipher algorithm.Security analysis and enhanced design of a dynamic block cipher was proposed.Firstly,the safety of ciphertext was enhanced based on confusion substitution o...There are a lot of security issues in block cipher algorithm.Security analysis and enhanced design of a dynamic block cipher was proposed.Firstly,the safety of ciphertext was enhanced based on confusion substitution of S-box,thus disordering the internal structure of data blocks by four steps of matrix transformation.Then,the diffusivity of ciphertext was obtained by cyclic displacement of bytes using column ambiguity function.The dynamic key was finally generated by using LFSR,which improved the stochastic characters of secret key in each of round of iteration.The safety performance of proposed algorithm was analyzed by simulation test.The results showed the proposed algorithm has a little effect on the speed of encryption and decryption while enhancing the security.Meanwhile,the proposed algorithm has highly scalability,the dimension of S-box and the number of register can be dynamically extended according to the security requirement.展开更多
Due to various geological processes such as tectonic activities fractures might be created in rock mass body which causes creation of blocks with different shapes and sizes in the rock body. Exact understand- ing of t...Due to various geological processes such as tectonic activities fractures might be created in rock mass body which causes creation of blocks with different shapes and sizes in the rock body. Exact understand- ing of these blocks geometry is an essential issue concerned in different domains of rock engineering such as support system of underground spaces built in jointed rock masses, design of blasting pattern, optimi- zation of fragmentation, determination of cube blocks in quarry mines, blocks stability, etc. The aim of this paper is to develop a computer program to determine geometry of rock mass blocks in two dimen- sional spaces. In this article, the eometrv of iointed rock mass is programmed in MATLABTM.展开更多
Iterative methods that take advantage of efficient block operations and block communications are popular research topics in parallel computation. These methods are especially important on Massively Parallel Processors...Iterative methods that take advantage of efficient block operations and block communications are popular research topics in parallel computation. These methods are especially important on Massively Parallel Processors (MPP). This paper presents a block variant of the GMRES method for solving general unsymmetric linear systems. It is shown that the new algorithm with block size s, denoted by BVGMRES(s,m), is theoretically equivalent to the GMRES(s. m) method. The numerical results show that this algorithm can be more efficient than the standard GMRES method on a cache based single CPU computer with optimized BLAS kernels. Furthermore, the gain in efficiency is more significant on MPPs due to both efficient block operations and efficient block data communications. Our numerical results also show that in comparison to the standard GMRES method, the more PEs that are used on an MPP, the more efficient the BVGMRES(s,m) algorithm is.展开更多
A fast authentication mode based on Multi-Block Chaining (MBC) is put forward; and its security is proved. The MBC mode is for new generation block cipher algorithms. Its speed is about 13% faster than that of the aut...A fast authentication mode based on Multi-Block Chaining (MBC) is put forward; and its security is proved. The MBC mode is for new generation block cipher algorithms. Its speed is about 13% faster than that of the authentication modes in common use (for example, cipher block chaining-message authentication code mode). The dependence test results meet the requirement. The MBC mode is complete; its degree of ava-lanche effect is about 0.9993; its degree of strict avalanche criterion is 0.992 or so. The frequency test results indicate that the output generated by the MBC mode has uniformity. The binary matrix rank test results imply that it is linear independent among disjoint sub-matrices of the output. Maurer’s universal statistical test results show that the output could be significantly compressed without loss of information. Run test, spectral test, non-overlapping template matching test, overlapping template matching test, Lempel-Ziv compression test, linear complexity test, serial test, approximate entropy test, cumulative sums test, random excursions test and random excursions variant test results fulfill the requirements of all. Therefore the MBC mode has good pseudo-randomness. Thus the security of MBC mode is verified by the way of statistical evaluation.展开更多
In this paper, we proposed a novel Two-layer Motion Estimation(TME) which searches motion vectors on two layers with partial distortion measures in order to reduce the overwhelming computational complexity of Motion E...In this paper, we proposed a novel Two-layer Motion Estimation(TME) which searches motion vectors on two layers with partial distortion measures in order to reduce the overwhelming computational complexity of Motion Estimation(ME) in video coding. A layer is an image which is derived from the reference frame such that the sum of a block of pixels in the reference frame determines the point of a layer. It has been noticed on different video sequences that many motion vectors on the layers are the same as those searched on the reference frame. The proposed TME performs a coarse search on the first layer to identify the small region in which the best candidate block is likely to be positioned and then perform local refined search on the next layer to pick the best candidate block in the located small area. The key feature of TME is its flexibility of mixing with any fast search algorithm. Experimental results on a wide variety of video sequences show that the proposed algorithm has achieved both fast speed and good motion prediction quality when compared to well known as well as the state-of-the-art fast block matching algorithms.展开更多
For the published block cipher algorithm, two kinds of round functions have been researched.Block ciphers in network environments are taking more risks than ever before because of their initialization key's distri...For the published block cipher algorithm, two kinds of round functions have been researched.Block ciphers in network environments are taking more risks than ever before because of their initialization key's distribution in the internet.The security of block cipher algorithm is affected by linear bias and nonlinear bias which are restricted by confusion layer and diffusion layer.This article takes an approach on how block cipher's two round structures are initially transformed when they fuse into LFSR.The SP structure can be considered two F functions in one Feistel round function which combines both right and left of origin data transformation.Furthermore, the round number linear function and nonlinear function of Feistel and SP structure are compared.The merit of SP structure is that it can fuse in LFSR as a nonlinear filter without memory.展开更多
The purpose of this paper is by using the modified block iterative method to propose an algorithm for finding a common element in the intersection of the set of common fixed points of an infinite family of quasi-C-asy...The purpose of this paper is by using the modified block iterative method to propose an algorithm for finding a common element in the intersection of the set of common fixed points of an infinite family of quasi-C-asymptotically nonexpansive and the set of solutions to an equilibrium problem and the set of solutions to a variational inequality. Under suitable conditions some strong convergence theorems are established in 2-uniformly convex and uniformly smooth Banach spaces. As applications we utilize the results presented in the paper to solving the convex feasibility problem (CFP) and zero point problem of maximal monotone mappings in Banach spaces. The results presented in the paper improve and extend the corresponding results announced by many authors.展开更多
文摘Block multiple measurement vectors (BMMV) is a reconstruction algorithm that can be used to recover the support of block K-joint sparse matrix X from Y = ΨX + V. In this paper, we propose a sufficient condition for accurate support recovery of the block K-joint sparse matrix via the BMMV algorithm in the noisy case. Furthermore, we show the optimality of the condition we proposed in the absence of noise when the problem reduces to single measurement vector case.
基金supported by the Yayasan Universiti Teknologi PETRONAS Grants,YUTP-PRG(015PBC-027)YUTP-FRG(015LC0-311),Hilmi Hasan,www.utp.edu.my.
文摘Medical imaging plays a key role within modern hospital management systems for diagnostic purposes.Compression methodologies are extensively employed to mitigate storage demands and enhance transmission speed,all while upholding image quality.Moreover,an increasing number of hospitals are embracing cloud computing for patient data storage,necessitating meticulous scrutiny of server security and privacy protocols.Nevertheless,considering the widespread availability of multimedia tools,the preservation of digital data integrity surpasses the significance of compression alone.In response to this concern,we propose a secure storage and transmission solution for compressed medical image sequences,such as ultrasound images,utilizing a motion vector watermarking scheme.The watermark is generated employing an error-correcting code known as Bose-Chaudhuri-Hocquenghem(BCH)and is subsequently embedded into the compressed sequence via block-based motion vectors.In the process of watermark embedding,motion vectors are selected based on their magnitude and phase angle.When embedding watermarks,no specific spatial area,such as a region of interest(ROI),is used in the images.The embedding of watermark bits is dependent on motion vectors.Although reversible watermarking allows the restoration of the original image sequences,we use the irreversible watermarking method.The reason for this is that the use of reversible watermarks may impede the claims of ownership and legal rights.The restoration of original data or images may call into question ownership or other legal claims.The peak signal-to-noise ratio(PSNR)and structural similarity index(SSIM)serve as metrics for evaluating the watermarked image quality.Across all images,the PSNR value exceeds 46 dB,and the SSIM value exceeds 0.92.Experimental results substantiate the efficacy of the proposed technique in preserving data integrity.
基金supported in part by National Natural Science Fundation of China under Grant No.61202458,61403109
文摘There are a lot of security issues in block cipher algorithm.Security analysis and enhanced design of a dynamic block cipher was proposed.Firstly,the safety of ciphertext was enhanced based on confusion substitution of S-box,thus disordering the internal structure of data blocks by four steps of matrix transformation.Then,the diffusivity of ciphertext was obtained by cyclic displacement of bytes using column ambiguity function.The dynamic key was finally generated by using LFSR,which improved the stochastic characters of secret key in each of round of iteration.The safety performance of proposed algorithm was analyzed by simulation test.The results showed the proposed algorithm has a little effect on the speed of encryption and decryption while enhancing the security.Meanwhile,the proposed algorithm has highly scalability,the dimension of S-box and the number of register can be dynamically extended according to the security requirement.
文摘Due to various geological processes such as tectonic activities fractures might be created in rock mass body which causes creation of blocks with different shapes and sizes in the rock body. Exact understand- ing of these blocks geometry is an essential issue concerned in different domains of rock engineering such as support system of underground spaces built in jointed rock masses, design of blasting pattern, optimi- zation of fragmentation, determination of cube blocks in quarry mines, blocks stability, etc. The aim of this paper is to develop a computer program to determine geometry of rock mass blocks in two dimen- sional spaces. In this article, the eometrv of iointed rock mass is programmed in MATLABTM.
文摘Iterative methods that take advantage of efficient block operations and block communications are popular research topics in parallel computation. These methods are especially important on Massively Parallel Processors (MPP). This paper presents a block variant of the GMRES method for solving general unsymmetric linear systems. It is shown that the new algorithm with block size s, denoted by BVGMRES(s,m), is theoretically equivalent to the GMRES(s. m) method. The numerical results show that this algorithm can be more efficient than the standard GMRES method on a cache based single CPU computer with optimized BLAS kernels. Furthermore, the gain in efficiency is more significant on MPPs due to both efficient block operations and efficient block data communications. Our numerical results also show that in comparison to the standard GMRES method, the more PEs that are used on an MPP, the more efficient the BVGMRES(s,m) algorithm is.
基金Supported by the National Hi-Tech Research & Devel-opment Plan of China (863 Project) (No.2003AA143040) and Jiangsu Provincial Key Laboratory of Network & Information Security (No.BM2003201).
文摘A fast authentication mode based on Multi-Block Chaining (MBC) is put forward; and its security is proved. The MBC mode is for new generation block cipher algorithms. Its speed is about 13% faster than that of the authentication modes in common use (for example, cipher block chaining-message authentication code mode). The dependence test results meet the requirement. The MBC mode is complete; its degree of ava-lanche effect is about 0.9993; its degree of strict avalanche criterion is 0.992 or so. The frequency test results indicate that the output generated by the MBC mode has uniformity. The binary matrix rank test results imply that it is linear independent among disjoint sub-matrices of the output. Maurer’s universal statistical test results show that the output could be significantly compressed without loss of information. Run test, spectral test, non-overlapping template matching test, overlapping template matching test, Lempel-Ziv compression test, linear complexity test, serial test, approximate entropy test, cumulative sums test, random excursions test and random excursions variant test results fulfill the requirements of all. Therefore the MBC mode has good pseudo-randomness. Thus the security of MBC mode is verified by the way of statistical evaluation.
文摘In this paper, we proposed a novel Two-layer Motion Estimation(TME) which searches motion vectors on two layers with partial distortion measures in order to reduce the overwhelming computational complexity of Motion Estimation(ME) in video coding. A layer is an image which is derived from the reference frame such that the sum of a block of pixels in the reference frame determines the point of a layer. It has been noticed on different video sequences that many motion vectors on the layers are the same as those searched on the reference frame. The proposed TME performs a coarse search on the first layer to identify the small region in which the best candidate block is likely to be positioned and then perform local refined search on the next layer to pick the best candidate block in the located small area. The key feature of TME is its flexibility of mixing with any fast search algorithm. Experimental results on a wide variety of video sequences show that the proposed algorithm has achieved both fast speed and good motion prediction quality when compared to well known as well as the state-of-the-art fast block matching algorithms.
文摘For the published block cipher algorithm, two kinds of round functions have been researched.Block ciphers in network environments are taking more risks than ever before because of their initialization key's distribution in the internet.The security of block cipher algorithm is affected by linear bias and nonlinear bias which are restricted by confusion layer and diffusion layer.This article takes an approach on how block cipher's two round structures are initially transformed when they fuse into LFSR.The SP structure can be considered two F functions in one Feistel round function which combines both right and left of origin data transformation.Furthermore, the round number linear function and nonlinear function of Feistel and SP structure are compared.The merit of SP structure is that it can fuse in LFSR as a nonlinear filter without memory.
基金Supported by Natural Science Foundation of Yibin University(Z-2009,No.3)
文摘The purpose of this paper is by using the modified block iterative method to propose an algorithm for finding a common element in the intersection of the set of common fixed points of an infinite family of quasi-C-asymptotically nonexpansive and the set of solutions to an equilibrium problem and the set of solutions to a variational inequality. Under suitable conditions some strong convergence theorems are established in 2-uniformly convex and uniformly smooth Banach spaces. As applications we utilize the results presented in the paper to solving the convex feasibility problem (CFP) and zero point problem of maximal monotone mappings in Banach spaces. The results presented in the paper improve and extend the corresponding results announced by many authors.