期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Block Principle Component Analysis with Lp-norm for Robust and Sparse Modelling 被引量:3
1
作者 TANG Ganyi LU Guifu 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第3期398-403,共6页
Block principle and pattern classification component analysis (BPCA) is a recently developed technique in computer vision In this paper, we propose a robust and sparse BPCA with Lp-norm, referred to as BPCALp-S, whi... Block principle and pattern classification component analysis (BPCA) is a recently developed technique in computer vision In this paper, we propose a robust and sparse BPCA with Lp-norm, referred to as BPCALp-S, which inherits the robustness of BPCA-L1 due to the employment of adjustable Lp-norm. In order to perform a sparse modelling, the elastic net is integrated into the objective function. An iterative algorithm which extracts feature vectors one by one greedily is elaborately designed. The monotonicity of the proposed iterative procedure is theoretically guaranteed. Experiments of image classification and reconstruction on several benchmark sets show the effectiveness of the proposed approach. 展开更多
关键词 block principle component analysis(BPCA) LP-NORM robust modelling sparse modelling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部