期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Numerical Solution of Two-Dimensional Nonlinear Stochastic Ito-Volterra Integral Equations by Applying Block Pulse Functions 被引量:2
1
作者 Guo Jiang Xiaoyan Sang +1 位作者 Jieheng Wu Biwen Li 《Advances in Pure Mathematics》 2019年第2期53-66,共14页
This paper investigates the numerical solution of two-dimensional nonlinear stochastic It&#244;-Volterra integral equations based on block pulse functions. The nonlinear stochastic integral equation is transformed... This paper investigates the numerical solution of two-dimensional nonlinear stochastic It&#244;-Volterra integral equations based on block pulse functions. The nonlinear stochastic integral equation is transformed into a set of algebraic equations by operational matrix of block pulse functions. Then, we give error analysis and prove that the rate of convergence of this method is efficient. Lastly, a numerical example is given to confirm the method. 展开更多
关键词 Block pulse Functions Integration Operational Matrix Stochastic It?-Volterra Integral Equations
下载PDF
一种新的小波方法求解一类分数阶微分方程 被引量:3
2
作者 谢宇 周凤英 《井冈山大学学报(自然科学版)》 2020年第3期1-8,共8页
通过对第五类Chebyshev多项式进行伸缩平移,构造了第五类Chebyshev小波。利用Block Pulse函数近似第五类Chebyshev小波求得其分数阶积分算子。由第五类Chebyshev多项式的性质证明了该小波级数的收敛性,并给出小波逼近函数的截断误差估... 通过对第五类Chebyshev多项式进行伸缩平移,构造了第五类Chebyshev小波。利用Block Pulse函数近似第五类Chebyshev小波求得其分数阶积分算子。由第五类Chebyshev多项式的性质证明了该小波级数的收敛性,并给出小波逼近函数的截断误差估计。此外,将第五类Chebyshev小波应用于分数阶微分方程的求解,通过数值算例,验证了该方法的有效性。 展开更多
关键词 第五类Chebyshev小波 Block pulse函数 分数阶积分算子 收敛性分析 分数阶微分方程
下载PDF
Modeling and analysis of singular systems via orthogonal triangular functions
3
作者 Suchismita GHOSH Anish DEB +1 位作者 Srimanti Roy CHOUDHURY Gautam SARKAR 《控制理论与应用(英文版)》 EI CSCD 2013年第2期141-148,共8页
This paper presents a new approach to singular system analysis by modeling the system in terms of orthog- onal triangular functions (TFs). The proposed method is more accurate compared to block pulse function-based ... This paper presents a new approach to singular system analysis by modeling the system in terms of orthog- onal triangular functions (TFs). The proposed method is more accurate compared to block pulse function-based analysis with respect to mean integral square error (MISE). A numerical example involving four states of a singular system is treated and solutions obtained thereof. Four tables and relevant curves are presented to compare the respective coefficients in block pulse function (BPF) domain as well as in TF domain. The percentage error of the samples determined via TF domain are compared with the exact samples of the states. Furthermore, MISE for both BPF and TF analysis are computed and compared to reveal the efficiency of TF-based analysis. 展开更多
关键词 Singular systems Triangular functions Block pulse functions System analysis Modeling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部