Precipitation over southeastern Lake Baikal features a significant decreasing trend in July and August over 1979–2018 and is closely related to blocking occurrence over central Siberia(45°–70°N,75°–1...Precipitation over southeastern Lake Baikal features a significant decreasing trend in July and August over 1979–2018 and is closely related to blocking occurrence over central Siberia(45°–70°N,75°–115°E).This study investigates the formation and maintenance of anticyclonic and cyclonic wave-breaking(AWB and CWB)blocking events and their climate impacts on precipitation in the southeastern Lake Baikal area.Both AWB and CWB blocking events are characterized by a cold trough deepening from the sub-Arctic region and a ridge amplifying toward its north over central Siberia,as well as an evident Rossby wave train over midlatitude Eurasia.For AWB blocking events,the ridge and trough pair tilts clockwise and the wave train exhibits a zonal distribution.In contrast,ridge and trough pair associated with CWB blocking events leans anticlockwise with larger-scale,meridional,and more anisotropic signatures.Moreover,the incoming Rossby wave energy associated with CWB blocking events is more evident than for AWB blocking events.Therefore,CWB blocking events are more persistent.AWB blocking events produce more extensive and persistent precipitation over the southeastern Lake Baikal area than CWB blocking events,in which moderate above-normal rainfall is seen in the decaying periods of blockings.A significant decreasing trend is found in terms of AWB blocking occurrence over central Siberia,which may contribute to the downward trend of precipitation over southeastern Lake Baikal.展开更多
A variable coefficient Korteweg de Vries (VCKdV) system is derived by considering the time-dependent basic flow and boundary conditions from the well-known Euler equation with an earth rotation term. The analytical ...A variable coefficient Korteweg de Vries (VCKdV) system is derived by considering the time-dependent basic flow and boundary conditions from the well-known Euler equation with an earth rotation term. The analytical solution obtained from the VCKdV equation can be successfully used to explain fruitful phenomena in fluid and other physical fields, for instance, the atmospheric blocking phenomena. In particular, a diploe blocking case happened during 9 April 1973 to 18 April 1973 read out from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data is well described by the analytical solution.展开更多
In this paper,the WKB method is used to obtain the nonlinear Schrdinger equation satisfied by nonlinear Rossby wave in the rotational barotropic atmosphere.It is found that the nonlinear Schrdinger equation has an env...In this paper,the WKB method is used to obtain the nonlinear Schrdinger equation satisfied by nonlinear Rossby wave in the rotational barotropic atmosphere.It is found that the nonlinear Schrdinger equation has an envelope solitary wave solution under the condition 1≤m≤2(m the zonal wavenumber),and the phase speed of envelope solitary Rossby wave in the atmosphere is related to the square of its amplitude linearly,that is,the larger the amplitude of envelope solitary Rossby wave,the smaller its propagation speed.Farthermore, the blocking high and cut-off low pressures which are consistent with the observations of blocking in the atmo- sphere are obtained by calculating envelope solitary Rossby wave,and the blocking structures persist more than five days,the results demonstrate that the envelope solitary Rossby wave is a possible mechanism about the formation,maintenance and breakout of blocking in the atmosphere.展开更多
冬季乌拉尔山地区阻塞高压(以下简称乌山阻高)是引发东亚地区寒潮天气的重要天气系统,研究其动力机制可为实际业务工作中的极端低温事件的预测提供更多的理论参考。本文利用美国国家环境预测中心-能源部(National Centre from Environme...冬季乌拉尔山地区阻塞高压(以下简称乌山阻高)是引发东亚地区寒潮天气的重要天气系统,研究其动力机制可为实际业务工作中的极端低温事件的预测提供更多的理论参考。本文利用美国国家环境预测中心-能源部(National Centre from Environmental Prediction-Department of Energy,NCEP-DOE)的再分析数据,采用天气学方法从1979-2018年40个冬季中甄选出21次短中(生命期5~7天)及14次长生命期(生命期等于或大于8天)乌山阻高,对比分析两类阻高过程中定常热(v*T*)、动量(u*v*)通量的输送特征,结果表明:(1)冬季长生命期阻高期间60°N附近v*T*的辐合量及u*v*输送量显著大于短中生命期的,说明定常热、动量输送对阻高的长时间维持有重要作用。且长生命期阻高期间对流层上层(300~150 hPa)20°N-40°N区域u*v*向北输送,短中生命期的则向南输送,说明副热带急流向中纬度输送u*v*为阻高长时间维持提供动量补充。同时冬季长生命期阻高期间70°N极锋急流偏弱,为阻高延长生命期,扩大范围提供有利条件。(2)定常热、动量通量在对流层中上层各层次上的分布也有显著不同。各层次上的v*T*及u*v*的输送都是通过阻高激发的Rossby波波列完成的。对流层中上层(500~300 hPa)乌山阻高关键区西北-东南域定常动量通量向极补充输送是阻高长时间维持的关键。展开更多
基金supported by the National Science and Technology Support Program of China (Grant No. 2015BAC03B03)the National Natural Science Foundation of China (Grant Nos. 41861144014, 41630424 and 41875078)
文摘Precipitation over southeastern Lake Baikal features a significant decreasing trend in July and August over 1979–2018 and is closely related to blocking occurrence over central Siberia(45°–70°N,75°–115°E).This study investigates the formation and maintenance of anticyclonic and cyclonic wave-breaking(AWB and CWB)blocking events and their climate impacts on precipitation in the southeastern Lake Baikal area.Both AWB and CWB blocking events are characterized by a cold trough deepening from the sub-Arctic region and a ridge amplifying toward its north over central Siberia,as well as an evident Rossby wave train over midlatitude Eurasia.For AWB blocking events,the ridge and trough pair tilts clockwise and the wave train exhibits a zonal distribution.In contrast,ridge and trough pair associated with CWB blocking events leans anticlockwise with larger-scale,meridional,and more anisotropic signatures.Moreover,the incoming Rossby wave energy associated with CWB blocking events is more evident than for AWB blocking events.Therefore,CWB blocking events are more persistent.AWB blocking events produce more extensive and persistent precipitation over the southeastern Lake Baikal area than CWB blocking events,in which moderate above-normal rainfall is seen in the decaying periods of blockings.A significant decreasing trend is found in terms of AWB blocking occurrence over central Siberia,which may contribute to the downward trend of precipitation over southeastern Lake Baikal.
基金Supported by the National Natural Science Foundation of China under Grant Nos 90203001, 10475055, 10547124 and 40305009.
文摘A variable coefficient Korteweg de Vries (VCKdV) system is derived by considering the time-dependent basic flow and boundary conditions from the well-known Euler equation with an earth rotation term. The analytical solution obtained from the VCKdV equation can be successfully used to explain fruitful phenomena in fluid and other physical fields, for instance, the atmospheric blocking phenomena. In particular, a diploe blocking case happened during 9 April 1973 to 18 April 1973 read out from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data is well described by the analytical solution.
文摘In this paper,the WKB method is used to obtain the nonlinear Schrdinger equation satisfied by nonlinear Rossby wave in the rotational barotropic atmosphere.It is found that the nonlinear Schrdinger equation has an envelope solitary wave solution under the condition 1≤m≤2(m the zonal wavenumber),and the phase speed of envelope solitary Rossby wave in the atmosphere is related to the square of its amplitude linearly,that is,the larger the amplitude of envelope solitary Rossby wave,the smaller its propagation speed.Farthermore, the blocking high and cut-off low pressures which are consistent with the observations of blocking in the atmo- sphere are obtained by calculating envelope solitary Rossby wave,and the blocking structures persist more than five days,the results demonstrate that the envelope solitary Rossby wave is a possible mechanism about the formation,maintenance and breakout of blocking in the atmosphere.
文摘冬季乌拉尔山地区阻塞高压(以下简称乌山阻高)是引发东亚地区寒潮天气的重要天气系统,研究其动力机制可为实际业务工作中的极端低温事件的预测提供更多的理论参考。本文利用美国国家环境预测中心-能源部(National Centre from Environmental Prediction-Department of Energy,NCEP-DOE)的再分析数据,采用天气学方法从1979-2018年40个冬季中甄选出21次短中(生命期5~7天)及14次长生命期(生命期等于或大于8天)乌山阻高,对比分析两类阻高过程中定常热(v*T*)、动量(u*v*)通量的输送特征,结果表明:(1)冬季长生命期阻高期间60°N附近v*T*的辐合量及u*v*输送量显著大于短中生命期的,说明定常热、动量输送对阻高的长时间维持有重要作用。且长生命期阻高期间对流层上层(300~150 hPa)20°N-40°N区域u*v*向北输送,短中生命期的则向南输送,说明副热带急流向中纬度输送u*v*为阻高长时间维持提供动量补充。同时冬季长生命期阻高期间70°N极锋急流偏弱,为阻高延长生命期,扩大范围提供有利条件。(2)定常热、动量通量在对流层中上层各层次上的分布也有显著不同。各层次上的v*T*及u*v*的输送都是通过阻高激发的Rossby波波列完成的。对流层中上层(500~300 hPa)乌山阻高关键区西北-东南域定常动量通量向极补充输送是阻高长时间维持的关键。