期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Stress arch bunch and its formation mechanism in blocky stratified rock masses
1
作者 Xin Huang Zixin Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2012年第1期19-27,共9页
Stress arch is a common phenomenon occurring in continuous materials and has also l:een proved to have great influences on the self-stabilization of soils or rock masses after excavation. In this paper, based on UDEC... Stress arch is a common phenomenon occurring in continuous materials and has also l:een proved to have great influences on the self-stabilization of soils or rock masses after excavation. In this paper, based on UDEC simulation, stress redistribution after excavation is investigated for a kind of special discontinuous material, i.e. blocky stratified rock mass. A layered stress arch system is observed with each stress arch lying over another. This special phenomenon is defined herein as "stress arch bunch". Effects of dip angle of bedding plane, lateral pressure and joint offset on this stress arch bunch are studied. Its formation mechanism is also discussed based on voussoir beam theory. 展开更多
关键词 blocky stratified rock mass UDEC stress arch bunch voussoir beam
下载PDF
Experimental and Numerical Study on Anchorage Strength and Deformation Properties of Blocky Rock Mass 被引量:1
2
作者 Junfu Zhu Qian Yin +2 位作者 Hongwen Jing Xinshuai Shi Minliang Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期725-753,共29页
This study experimentally and numerically investigated the anchorage properties,bolt force evolution,deformation and stress fields of blocky rock mass with various dip angles of joint surfaces under an applied axial l... This study experimentally and numerically investigated the anchorage properties,bolt force evolution,deformation and stress fields of blocky rock mass with various dip angles of joint surfaces under an applied axial load.The results show that due to bolt reinforcement,the axial stress-strain curves of anchorage blocky rock mass show typical strain-hardening characteristics,and comparedwithmodels without anchorage,the peak strength and elastic modulus increase by 21.56%and 20.0%,respectively.With an increase in axial stress,the lateral strain continuously increases,and restriction effects of bolts reduce the overall deformation of model surfaces.The axial stressstrain curves of anchorage blocky rock mass in the simulations present a“double peak strength”phenomenon due to bolt reinforcement,and the peak strength,second peak strength,residual strength,surface displacement field,as well as the principal stress fields all depend on the dip angles of joint surfaces.As a result of the bolt reinforcement effects,cone-shaped compression zones are produced in the models,and compression zones of adjacent bolts superimpose with each other to form anchorage belts,improving the overall bearing capacity of anchorage models.Obvious stress concentration can be observed at both bolt end and anchorage section.Not only the role of bolt support transfers the blocky rock mass to be a three-dimensional stress state through compression effects,but also it improves both tensile strength and shear resistance of both joint surfaces and the overall blocky rock mass. 展开更多
关键词 blocky rock mass ANCHORAGE STRENGTH DISPLACEMENT numerical simulation
下载PDF
Influence of degree of interlock on confined strength of jointed hard rock masses
3
作者 Navid Bahrani Peter K.Kaiser 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1152-1170,共19页
The strength of jointed rock mass is strongly controlled by the degree of interlock between its constituent rock blocks.The degree of interlock constrains the kinematic freedom of individual rock blocks to rotate and ... The strength of jointed rock mass is strongly controlled by the degree of interlock between its constituent rock blocks.The degree of interlock constrains the kinematic freedom of individual rock blocks to rotate and slide along the block forming joints.The HoekeBrown(HB)failure criterion and the geological strength index(GSI)were developed based on experiences from mine slopes and tunneling projects in moderately to poorly interlocked jointed rock masses.It has since then been demonstrated that the approach to estimate the HB strength parameters based on the GSI strength scaling equations(called the‘GSI strength equations’)tends to underestimate the confined peak strength of highly interlocked jointed rock masses(i.e.GSI>65),where the rock mass is often non-persistently jointed,and the intact rock blocks are strong and brittle.The estimation of the confined strength of such rock masses is relevant when designing mine pillars and abutments at great depths,where the confining pressure is high enough to prevent block rotation and free sliding on block boundaries.In this article,a grain-based distinct element modeling approach is used to simulate jointed rock masses of various degrees of interlock and to investigate the influences of block shape,joint persistence and joint surface condition on the confined peak strengths.The focus is on non-persistently jointed and blocky(persistently jointed)rock masses,consisting of hard and homogeneous rock blocks devoid of any strength degrading defects such as veins.The results from this investigation confirm that the GSI strength equations underestimate the confined strength of highly interlocked and non-persistently jointed rock masses.Moreover,the GSI strength equations are found to be valid to estimate the confined strength of persistently jointed rock masses with smooth and non-dilatant joint surfaces. 展开更多
关键词 rock mass strength Degree of interlock Non-persistently jointed rock mass blocky rock mass Geological strength index(GSI) GSI strength equations
下载PDF
Failure behavior and strength model of blocky rock mass with and without rockbolts
4
作者 Chun Zhu Xiansen Xing +4 位作者 Manchao He Zhicheng Tang Feng Xiong Zuyang Ye Chaoshui Xu 《International Journal of Mining Science and Technology》 SCIE EI CAS 2024年第6期747-762,共16页
To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforceme... To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforcement.The results show that both shear failure and tensile failure along joint surfaces are observed but the shear failure is a main controlling factor for the peak strength of the rock mass with and without rockbolts.The rockbolts are necked and shear deformation simultaneously happens in bolt reinforced rock specimens.As the joint dip angle increases,the joint shear failure becomes more dominant.The number of rockbolts has a significant impact on the peak strain and uniaxial compressive strength(UCS),but little influence on the deformation modulus of the rock mass.Using the Winkler beam model to represent the rockbolt behaviours,an analytical model for the prediction of the strength of boltreinforced blocky rocks is proposed.Good agreement between the UCS values predicted by proposed model and obtained from experiments suggest an encouraging performance of the proposed model.In addition,the performance of the proposed model is further assessed using published results in the literature,indicating the proposed model can be used effectively in the prediction of UCS of bolt-reinforced blocky rocks. 展开更多
关键词 blocky rock mass rockbolt ground support Uniaxial compression test Failure mechanism Uniaxial compressive strength model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部