BACKGROUND: Inflammatory reaction and the increased level of its accompanying active protein play an important role in the occurrence and development of cerebral infarction. C-reactive protein, fibrinogen and white b...BACKGROUND: Inflammatory reaction and the increased level of its accompanying active protein play an important role in the occurrence and development of cerebral infarction. C-reactive protein, fibrinogen and white blood cell, as the monitoring index of inflammatory reaction, are very important in the occurrence and development of acute cerebral infarction. OBJECTIVE: To make a comparison between patients with primary hypertension accompanied with acute cerebral infarction and with simple primary hypertension by observing the changes in plasma C-reactive protein and fibrinogen levels as well as white blood cell and differential counts and analyzing their significances. DESIGN : Controlled observation SETTING : Ward Building for VIP, Shenzhen Hospital, Peking University. PARTICIPANTS: Totally 133 patients with primary hypertension were selected from Ward Building for VIP, Shenzhen Hospital, Peking University during September 2003 to September 2005, The diagnostic criteria were based on the hypertension diagnosis criteria formulated by the 7^th World Health Organization-International Society of Hypertension Guidelines (WHO-ISH) in 1998. The informed consents were obtained from all the participants. The involved patients were assigned into two groups: primary hypertension group, in which, there were 65 patients with primary hypertension ( degree 2), including 42 males and 23 females, with mean age of (61 ±14)years and mean blood pressure of (162.7±6.8)/(94.2±8.4) mm Hg (1 mm Hg =0.133 kPa), and primary hypertension combined with cerebral infarction group, in which, there were 68 patients with primary hypertension combined with cerebral infarction ( meeting the diagnostic criteria formulated in the 4^th National Cerebrovascular Diseases Meeting in 1995 and diagnosed by skull CT or MRI to exclude the patients with lacunar infarction), including 42 males and 26 females, with mean age of (56±15) years and mean blood pressure of (176.4±9.2)/(96.3±9.7) mm Hg. METHODS: Plasm C-reactive protein and fibrinogen levels, and white blood cell and differential counts of patients in the two groups were examined 24 hours after stroke. The above indexes were re-examined in the primary hypertension combined with cerebral infarction group 72 hours after stroke. White blood cell and differential counts were performed with laser method (East Asia FE-95001 RAM-1, Japan). The level of C-reactive protein was measured with turbidimetry (BNII Automatic Systems For Analysis, USA). The level of fibrinogen was measured with algorithm method when prothrombin time was normal and with Clauss method when prothrombin time was abnormal (ACL Automatic Coagulation Analyzer, USA). MAIN OUTCOME MEASURES: The plasm C-reactive protein and flbrinogen levels, and white blood cell and differential counts 24 hours after stroke in two groups and 72 hours after stroke in primary hypertension combined with cerebral infarction group. RESULTS: All the 133 involved patients participated in the result analysis. The plasm C-reactive protein and fibrinogen levels, and white blood cell and neutrophil counts in patients with primary hypertension were all within the normal range. The plasm C-reactive protein and fibrinogen levels, and white blood cell and neu- trophil counts in patients with primary hypertension combined with cerebral infarction were significantly higher than those in patients with primary hypertension 24 hours after stroke and 72 hours after stroke respectively[24 hours after stroke:(32.12±11.76) mg/L vs. (5.02±3.21 ) mg/L;(4.64±0.75) g/L vs. (3.12±0.49) g/L; (9.32±81)×10^9 L^- 1 vs. (5.78±1.32)×10^9L^- 1 (7.85±2.38)×10^9 L^- 1 vs.(3.49±1.28)×10^9 L^-1,t =7.094, 5.759,4.106,5.491, respectively,all P〈 0.01; 72 hours after stroke: (47.62±18.43) mg/L vs. (32.12±11.76) mg/L; (5.08±0.82) g/L vs. (4.64±0.75) g/L, t =2.864,2.220, respectively, both P 〈 0.05]. CONCLUSION: The increase in fibrinogen level and white blood cell count are the important index in monitoring primary hypertension combined with acute cerebral infarction. The increase in plasm C-reactive protein and fibrinogen levels 72 hours after stroke indicates that plasma C-reactive protein and fibrinogen are very important in the development of disease.展开更多
Ischemic stroke is an important disease leading to death and disability for all human beings, and the key to its treatment lies in the early opening of obstructed vessels and restoration of perfusion to the local infa...Ischemic stroke is an important disease leading to death and disability for all human beings, and the key to its treatment lies in the early opening of obstructed vessels and restoration of perfusion to the local infarcted area. Intravenous thrombolysis with tissue plasminogen activator (tPA) is one of the effective therapies to achieve revascularization, but it faces strict indications with a narrow therapeutic time window, and significantly increases the incidence of hemorrhagic transformation, HT, after reperfusion of the infarcted foci, which greatly reduces the incidence of patients with ischemic stroke. which significantly increases the incidence of hemorrhagic transformation (HT) after reperfusion of the infarcted focus, greatly reducing patient utilization and clinical benefit. Since the mechanism of HT has not been fully elucidated, and the related molecular mechanisms are complex and interactive, there is no specific and effective therapy to avoid the occurrence of HT. In this article, we focus on the research progress on the mechanism of HT after tPA intravenous thrombolysis in ischemic stroke patients from the aspects of vascular integrity disruption, oxidative stress, and neuroinflammatory response and the corresponding therapeutic strategies, in order to improve the safety and prognosis of tPA intravenous thrombolysis in the clinic.展开更多
文摘BACKGROUND: Inflammatory reaction and the increased level of its accompanying active protein play an important role in the occurrence and development of cerebral infarction. C-reactive protein, fibrinogen and white blood cell, as the monitoring index of inflammatory reaction, are very important in the occurrence and development of acute cerebral infarction. OBJECTIVE: To make a comparison between patients with primary hypertension accompanied with acute cerebral infarction and with simple primary hypertension by observing the changes in plasma C-reactive protein and fibrinogen levels as well as white blood cell and differential counts and analyzing their significances. DESIGN : Controlled observation SETTING : Ward Building for VIP, Shenzhen Hospital, Peking University. PARTICIPANTS: Totally 133 patients with primary hypertension were selected from Ward Building for VIP, Shenzhen Hospital, Peking University during September 2003 to September 2005, The diagnostic criteria were based on the hypertension diagnosis criteria formulated by the 7^th World Health Organization-International Society of Hypertension Guidelines (WHO-ISH) in 1998. The informed consents were obtained from all the participants. The involved patients were assigned into two groups: primary hypertension group, in which, there were 65 patients with primary hypertension ( degree 2), including 42 males and 23 females, with mean age of (61 ±14)years and mean blood pressure of (162.7±6.8)/(94.2±8.4) mm Hg (1 mm Hg =0.133 kPa), and primary hypertension combined with cerebral infarction group, in which, there were 68 patients with primary hypertension combined with cerebral infarction ( meeting the diagnostic criteria formulated in the 4^th National Cerebrovascular Diseases Meeting in 1995 and diagnosed by skull CT or MRI to exclude the patients with lacunar infarction), including 42 males and 26 females, with mean age of (56±15) years and mean blood pressure of (176.4±9.2)/(96.3±9.7) mm Hg. METHODS: Plasm C-reactive protein and fibrinogen levels, and white blood cell and differential counts of patients in the two groups were examined 24 hours after stroke. The above indexes were re-examined in the primary hypertension combined with cerebral infarction group 72 hours after stroke. White blood cell and differential counts were performed with laser method (East Asia FE-95001 RAM-1, Japan). The level of C-reactive protein was measured with turbidimetry (BNII Automatic Systems For Analysis, USA). The level of fibrinogen was measured with algorithm method when prothrombin time was normal and with Clauss method when prothrombin time was abnormal (ACL Automatic Coagulation Analyzer, USA). MAIN OUTCOME MEASURES: The plasm C-reactive protein and flbrinogen levels, and white blood cell and differential counts 24 hours after stroke in two groups and 72 hours after stroke in primary hypertension combined with cerebral infarction group. RESULTS: All the 133 involved patients participated in the result analysis. The plasm C-reactive protein and fibrinogen levels, and white blood cell and neutrophil counts in patients with primary hypertension were all within the normal range. The plasm C-reactive protein and fibrinogen levels, and white blood cell and neu- trophil counts in patients with primary hypertension combined with cerebral infarction were significantly higher than those in patients with primary hypertension 24 hours after stroke and 72 hours after stroke respectively[24 hours after stroke:(32.12±11.76) mg/L vs. (5.02±3.21 ) mg/L;(4.64±0.75) g/L vs. (3.12±0.49) g/L; (9.32±81)×10^9 L^- 1 vs. (5.78±1.32)×10^9L^- 1 (7.85±2.38)×10^9 L^- 1 vs.(3.49±1.28)×10^9 L^-1,t =7.094, 5.759,4.106,5.491, respectively,all P〈 0.01; 72 hours after stroke: (47.62±18.43) mg/L vs. (32.12±11.76) mg/L; (5.08±0.82) g/L vs. (4.64±0.75) g/L, t =2.864,2.220, respectively, both P 〈 0.05]. CONCLUSION: The increase in fibrinogen level and white blood cell count are the important index in monitoring primary hypertension combined with acute cerebral infarction. The increase in plasm C-reactive protein and fibrinogen levels 72 hours after stroke indicates that plasma C-reactive protein and fibrinogen are very important in the development of disease.
文摘Ischemic stroke is an important disease leading to death and disability for all human beings, and the key to its treatment lies in the early opening of obstructed vessels and restoration of perfusion to the local infarcted area. Intravenous thrombolysis with tissue plasminogen activator (tPA) is one of the effective therapies to achieve revascularization, but it faces strict indications with a narrow therapeutic time window, and significantly increases the incidence of hemorrhagic transformation, HT, after reperfusion of the infarcted foci, which greatly reduces the incidence of patients with ischemic stroke. which significantly increases the incidence of hemorrhagic transformation (HT) after reperfusion of the infarcted focus, greatly reducing patient utilization and clinical benefit. Since the mechanism of HT has not been fully elucidated, and the related molecular mechanisms are complex and interactive, there is no specific and effective therapy to avoid the occurrence of HT. In this article, we focus on the research progress on the mechanism of HT after tPA intravenous thrombolysis in ischemic stroke patients from the aspects of vascular integrity disruption, oxidative stress, and neuroinflammatory response and the corresponding therapeutic strategies, in order to improve the safety and prognosis of tPA intravenous thrombolysis in the clinic.