The article discusses engineering approaches to solving the problem of oil vapours in generators. Due to the design characteristics of each power plant, it is difficult to find a typical solution. Nevertheless, the ar...The article discusses engineering approaches to solving the problem of oil vapours in generators. Due to the design characteristics of each power plant, it is difficult to find a typical solution. Nevertheless, the article suggests ways to reduce the amount of oil mist. For their implementation, a calculation methodology based on the substitution scheme of the hydraulic path of the bearing support unit is created which takes into account the design features of the bearing and the parameters of the environment around the oil bath. The methodology employed is presented. The numerical method of modelling the aerodynamic fields of the entire hydro generator is used to estimate the air flows and pressures in the oil bath zone of the thrust bearing. Additionally, the method made it possible to track suspected oil particles that could get from the thrust-bearing bath into the surrounding area of the generator. Measures are proposed to reduce the level of oil mist through the competent design of the oil vapour removal system from the bearing bath.展开更多
The role of cold nitrogen gas and oil mist on tool wear and surface roughness is investigated in turning the K424 nickel-base super alloy with Sialon and SiC whisker-reinforced alumina ceramic tools. A new cooling sys...The role of cold nitrogen gas and oil mist on tool wear and surface roughness is investigated in turning the K424 nickel-base super alloy with Sialon and SiC whisker-reinforced alumina ceramic tools. A new cooling system is developed and used to lower the temperature of the compressed nitrogen gas. Experiments are performed in three different cooling/lubrication modes, i.e. the dry cutting, the cold nitrogen gas (CNG), and the cold nitrogen gas and oil mist (CNGOM). Experimental results show that the depth-of-cut notching severely limits the tool life in all the cooling/lubrication modes. Compared with the dry cutting, the use of CNG and CNGOMcan yield higher wear rate of depth-of-cut notching and worse surface finish.展开更多
文摘The article discusses engineering approaches to solving the problem of oil vapours in generators. Due to the design characteristics of each power plant, it is difficult to find a typical solution. Nevertheless, the article suggests ways to reduce the amount of oil mist. For their implementation, a calculation methodology based on the substitution scheme of the hydraulic path of the bearing support unit is created which takes into account the design features of the bearing and the parameters of the environment around the oil bath. The methodology employed is presented. The numerical method of modelling the aerodynamic fields of the entire hydro generator is used to estimate the air flows and pressures in the oil bath zone of the thrust bearing. Additionally, the method made it possible to track suspected oil particles that could get from the thrust-bearing bath into the surrounding area of the generator. Measures are proposed to reduce the level of oil mist through the competent design of the oil vapour removal system from the bearing bath.
文摘The role of cold nitrogen gas and oil mist on tool wear and surface roughness is investigated in turning the K424 nickel-base super alloy with Sialon and SiC whisker-reinforced alumina ceramic tools. A new cooling system is developed and used to lower the temperature of the compressed nitrogen gas. Experiments are performed in three different cooling/lubrication modes, i.e. the dry cutting, the cold nitrogen gas (CNG), and the cold nitrogen gas and oil mist (CNGOM). Experimental results show that the depth-of-cut notching severely limits the tool life in all the cooling/lubrication modes. Compared with the dry cutting, the use of CNG and CNGOMcan yield higher wear rate of depth-of-cut notching and worse surface finish.