To improve the removal efficiency of such submicron inclusions,we designed an argon blowing method for an RH facility based on mathematical simulations.The effect of the argon blowing on the liquid steel flow and the ...To improve the removal efficiency of such submicron inclusions,we designed an argon blowing method for an RH facility based on mathematical simulations.The effect of the argon blowing on the liquid steel flow and the movement of submicron inclusions was studied using the k-ε flow model coupled with the DPM model for inclusion movement based on fluid computational dynamics in FLUENT.It was found that a more uniform argon flow can be achieved in the up-leg snorkel with a new nozzle position and inner diameter,which resulted in a favorable up-lifting and mixing movement.The new design also increased the circulation rate of molten steel in the RH chamber.The increased turbulent kinetic energy and turbulent dispersing rate enhanced the collision probability of submicron inclusions,which results in an improved removal for 0.5-1 μm inclusions.The proposed RH facility could increase the removal rate of submicron inclusions from the original 57.1% to 66.4%,which improves the magnetic properties of non-oriented silicon steel.展开更多
通过建立包括真空室、浸渍管、钢包的180 t RH气液流动三维物理数学模型,采用VOF两相流模型和应用FLUENT软件进行数值模拟研究了侧吹氩气喷孔布置方式及吹气量对RH内气液两相循环流动的影响。分析了喷气孔单层布置和双层交错布置对喷气...通过建立包括真空室、浸渍管、钢包的180 t RH气液流动三维物理数学模型,采用VOF两相流模型和应用FLUENT软件进行数值模拟研究了侧吹氩气喷孔布置方式及吹气量对RH内气液两相循环流动的影响。分析了喷气孔单层布置和双层交错布置对喷气流量和上下层间距对上升管出口截面含气率、上升管和下降管出口速度以及循环流量的影响。结果表明,氩气在上升管内贴壁上升,并携带钢液向上运动,沿着运动方向管内截面含气率逐渐增加,在出口截面处含气率达到最大;上升管出口截面含气率越小,上升管出口和下降管出口截面中心速度越大,循环流量越大,均混时间越短;喷气管双层布置、减小间距、增大吹气量,有利于循环流量的提高和均混时间的缩短。展开更多
基金Funded by the National Natural Science Foundation of China(No.51804231)the Key R&D Program of Hubei Province(No.2020BAA027)。
文摘To improve the removal efficiency of such submicron inclusions,we designed an argon blowing method for an RH facility based on mathematical simulations.The effect of the argon blowing on the liquid steel flow and the movement of submicron inclusions was studied using the k-ε flow model coupled with the DPM model for inclusion movement based on fluid computational dynamics in FLUENT.It was found that a more uniform argon flow can be achieved in the up-leg snorkel with a new nozzle position and inner diameter,which resulted in a favorable up-lifting and mixing movement.The new design also increased the circulation rate of molten steel in the RH chamber.The increased turbulent kinetic energy and turbulent dispersing rate enhanced the collision probability of submicron inclusions,which results in an improved removal for 0.5-1 μm inclusions.The proposed RH facility could increase the removal rate of submicron inclusions from the original 57.1% to 66.4%,which improves the magnetic properties of non-oriented silicon steel.
文摘通过建立包括真空室、浸渍管、钢包的180 t RH气液流动三维物理数学模型,采用VOF两相流模型和应用FLUENT软件进行数值模拟研究了侧吹氩气喷孔布置方式及吹气量对RH内气液两相循环流动的影响。分析了喷气孔单层布置和双层交错布置对喷气流量和上下层间距对上升管出口截面含气率、上升管和下降管出口速度以及循环流量的影响。结果表明,氩气在上升管内贴壁上升,并携带钢液向上运动,沿着运动方向管内截面含气率逐渐增加,在出口截面处含气率达到最大;上升管出口截面含气率越小,上升管出口和下降管出口截面中心速度越大,循环流量越大,均混时间越短;喷气管双层布置、减小间距、增大吹气量,有利于循环流量的提高和均混时间的缩短。