The ultraviolet (UV) and blue luminescence of Zn-rich zinc oxide thin film deposited by electron-beam evaporation have been investigated at room temperature (RT). We observed that the UV and blue electroluminescence (...The ultraviolet (UV) and blue luminescence of Zn-rich zinc oxide thin film deposited by electron-beam evaporation have been investigated at room temperature (RT). We observed that the UV and blue electroluminescence (EL) emission band centered around 480 nm which is blue shifted in comparison with that of the ZnO thin film prepared by low pressure metal organic chemical vapor deposition (LP MOCVD). The UV emission is much stronger than blue emission in the photoluminescence (PL) spectra. The field-induced ionization of excited luminescent centers of ZnO:Zn thin film at high electric field and the difference between PL and EL are discussed. The experiments show that the ZnO:Zn thin film provides a hopeful new mechanism to obtain UV and blue emission.展开更多
基金This work was supported by the High-Tech Pro-ject (Grant No. 863-715-0082), Research Funds for Doctoral Programm (Grant No. 97000401)the National Natural Science Foundation of China (Grant Nos. 69977001, 19974002 and 59982001) and Paper Foundation of
文摘The ultraviolet (UV) and blue luminescence of Zn-rich zinc oxide thin film deposited by electron-beam evaporation have been investigated at room temperature (RT). We observed that the UV and blue electroluminescence (EL) emission band centered around 480 nm which is blue shifted in comparison with that of the ZnO thin film prepared by low pressure metal organic chemical vapor deposition (LP MOCVD). The UV emission is much stronger than blue emission in the photoluminescence (PL) spectra. The field-induced ionization of excited luminescent centers of ZnO:Zn thin film at high electric field and the difference between PL and EL are discussed. The experiments show that the ZnO:Zn thin film provides a hopeful new mechanism to obtain UV and blue emission.