An investigation was carried out by numerical simulation on a wind turbine airfoil and a blunt trailing-edge airfoil with and without vortex generators (VGs), and the performance of the airfoils was analyzed. By the s...An investigation was carried out by numerical simulation on a wind turbine airfoil and a blunt trailing-edge airfoil with and without vortex generators (VGs), and the performance of the airfoils was analyzed. By the simulation of airfoil DU 91-W2-250 it was verified that the numerical method and model were credible. Based on this airfoil, a new one with a blunt trailing edge of 6% chord was blended by symmetrically adding thickness, and its characteristics curves were obtained through computing at key angles of attack. Additionally, the pressure distribution on blended airfoil was analyzed by comparing to the airfoil without blend. The interaction of streamwise vortices induced by VGs with trailing vortex or separation vortex was considered, followed by the uncovery of how VGs can suppress the boundary layer separation.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.50836006)
文摘An investigation was carried out by numerical simulation on a wind turbine airfoil and a blunt trailing-edge airfoil with and without vortex generators (VGs), and the performance of the airfoils was analyzed. By the simulation of airfoil DU 91-W2-250 it was verified that the numerical method and model were credible. Based on this airfoil, a new one with a blunt trailing edge of 6% chord was blended by symmetrically adding thickness, and its characteristics curves were obtained through computing at key angles of attack. Additionally, the pressure distribution on blended airfoil was analyzed by comparing to the airfoil without blend. The interaction of streamwise vortices induced by VGs with trailing vortex or separation vortex was considered, followed by the uncovery of how VGs can suppress the boundary layer separation.