H-steel all-bolted connection steel frame structures with heat preservation and decoration composite wall boards were investigated and the seismic performances of three scaled specimens were studied.The failure modes,...H-steel all-bolted connection steel frame structures with heat preservation and decoration composite wall boards were investigated and the seismic performances of three scaled specimens were studied.The failure modes,hysteresis curves,bearing capacity,ductility,energy dissipation capacity,stiffness degradation and strain distribution were discussed.The calculation method of structural theoretical internal force was presented.The results showed that the overall structural seismic performance was better,and the structural ductility met the demands of elastic-plastic inter-story drift angle for seismic design.The H-steel weak-axis connection structure obtained better energy dissipation capacity,and its bearing capacity and stiffness were slightly different from the strong-axis connection.The heat preservation and decoration performance of composite wallboard and the all-bolted connection of the steel frame realized prefabrication during the whole construction period.The plastic hinge of the steel beam can be moved outwards because of the L-angles,which effectively avoids stress concentration in joint areas and expands the plastic hinge range.The errors between the theoretical structural capacity calculated by the plastic analysis method and the test results were within 2.44%.In addition,structural failure mechanisms and bearing capacities were verified by the finite element(FE)analysis,and the effects of the main parameters on the structures were investigated.The FE verification results were the same as in the test.The research results provide theoretical support and technical guidance for the application of thermal insulation and decorative composite wall panels in H-shaped steel all-bolted steel frames.展开更多
Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate...Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate ions,favors the longitudinal growth of the crystalline form of the hydration product,which was relatively simple and had the highest length to width(L/D)ratio.At the same time,MF can also improve L/D ratio of gypsum hydration products,which favors the formation of hydrated whiskers.Finally,in a composite system composed of hemihydrate gypsum,MF,and glass fibers,when dilute sulfuric acid was used to regulate pH=3-4,the tight binding formed among the components of the composite system compared to pH=5-6.The hydration product of gypsum adheres tightly to glass fiber surface and produces a good cross-linking and binding effect with MF.The flexural strength,compressive strength,elastic modulus,and water absorption of the desulphurized gypsum composite board is 22.7 MPa,39.8 MPa,5608 MPa,and 1.8%,respectively.展开更多
This research aims to measure the current gender representation in membership of boards of directors,and to study the factors affecting the presence of women on boards.The results of the study will support the decisio...This research aims to measure the current gender representation in membership of boards of directors,and to study the factors affecting the presence of women on boards.The results of the study will support the decision makers and policy makers at all levels by providing knowledge that contributes to bridging the current gap in participation of women boards.The methodology used in this research is the descriptive analytical approach,which relies on quantitative methods in the process of collecting and analyzing data.This study represents the boards of directors in the three sectors(public,private,and non-profit)in the Kingdom of Saudi Arabia,The study sample contained 350 targets,where a random sample of 150 people in the public sector,100 people in the private sector,and 100 people in the non-profit sector were selected.The research result found that the majority of the responses believe that the lack of experience and training,and social factors,are the most impact areas of explaining the reasons for the existence of a gap in women’s membership in boards of directors in the three sectors.And the most important reasons for the existence of a gender gap in board membership are:there is no statutory minimum percentage for women’s representation on boards of directors,and scarcity of female competencies in general,and the lack of women occupying leadership positions.展开更多
Printed circuit boards(PCBs)provide stable connections between electronic components.However,defective printed circuit boards may cause the entire equipment system to malfunction,resulting in incalculable losses.There...Printed circuit boards(PCBs)provide stable connections between electronic components.However,defective printed circuit boards may cause the entire equipment system to malfunction,resulting in incalculable losses.Therefore,it is crucial to detect defective printed circuit boards during the generation process.Traditional detection methods have low accuracy in detecting subtle defects in complex background environments.In order to improve the detection accuracy of surface defects on industrial printed circuit boards,this paper proposes a residual large kernel network based on YOLOv5(You Only Look Once version 5)for PCBs surface defect detection,called YOLO-RLC(You Only Look Once-Residual Large Kernel).Build a deep large kernel backbone to expand the effective field of view,capture global informationmore efficiently,and use 1×1 convolutions to balance the depth of the model,improving feature extraction efficiency through reparameterization methods.The neck network introduces a bidirectional weighted feature fusion network,combined with a brand-new noise filter and feature enhancement extractor,to eliminate noise information generated by information fusion and recalibrate information from different channels to improve the quality of deep features.Simplify the aspect ratio of the bounding box to alleviate the issue of specificity values.After training and testing on the PCB defect dataset,our method achieved an average accuracy of 97.3%(mAP50)after multiple experiments,which is 4.1%higher than YOLOv5-S,with an average accuracy of 97.6%and an Frames Per Second of 76.7.The comparative analysis also proves the superior performance and feasibility of YOLO-RLC in PCB defect detection.展开更多
Printed Circuit Board(PCB)surface tiny defect detection is a difficult task in the integrated circuit industry,especially since the detection of tiny defects on PCB boards with large-size complex circuits has become o...Printed Circuit Board(PCB)surface tiny defect detection is a difficult task in the integrated circuit industry,especially since the detection of tiny defects on PCB boards with large-size complex circuits has become one of the bottlenecks.To improve the performance of PCB surface tiny defects detection,a PCB tiny defects detection model based on an improved attention residual network(YOLOX-AttResNet)is proposed.First,the unsupervised clustering performance of the K-means algorithm is exploited to optimize the channel weights for subsequent operations by feeding the feature mapping into the SENet(Squeeze and Excitation Network)attention network;then the improved K-means-SENet network is fused with the directly mapped edges of the traditional ResNet network to form an augmented residual network(AttResNet);and finally,the AttResNet module is substituted for the traditional ResNet structure in the backbone feature extraction network of mainstream excellent detection models,thus improving the ability to extract small features from the backbone of the target detection network.The results of ablation experiments on a PCB surface defect dataset show that AttResNet is a reliable and efficient module.In Torify the performance of AttResNet for detecting small defects in large-size complex circuit images,a series of comparison experiments are further performed.The results show that the AttResNet module combines well with the five best existing target detection frameworks(YOLOv3,YOLOX,Faster R-CNN,TDD-Net,Cascade R-CNN),and all the combined new models have improved detection accuracy compared to the original model,which suggests that the AttResNet module proposed in this paper can help the detection model to extract target features.Among them,the YOLOX-AttResNet model proposed in this paper performs the best,with the highest accuracy of 98.45% and the detection speed of 36 FPS(Frames Per Second),which meets the accuracy and real-time requirements for the detection of tiny defects on PCB surfaces.This study can provide some new ideas for other real-time online detection tasks of tiny targets with high-resolution images.展开更多
This study tackles current environmental challenges by developing innovative and eco-friendly particle boards utilizing sorghum husk, combined with recycled expanded polystyrene (EPS). This dual eco-responsible approa...This study tackles current environmental challenges by developing innovative and eco-friendly particle boards utilizing sorghum husk, combined with recycled expanded polystyrene (EPS). This dual eco-responsible approach valorizes sorghum husk, often deemed agricultural waste, and repurposes EPS, a plastic waste, thus contributing to CO2 emission reduction and effective waste management. The manufacturing process involves dissolving recycled polystyrene within a solvent to create a binder, which is then mixed with sorghum husk and cold-pressed into composite boards. The study explores the impact of two particle sizes (fine and coarse) and two different concentrations of the recycled EPS binder. Results demonstrate significant variations in the boards’ mechanical properties, displaying a range of Modulus of Rupture (MOR) from 0.84 MPa to 3.85 MPa, and Modulus of Elasticity (MOE) spanning from 658.13 MPa to 1313.25 MPa, influenced by the binder concentration and particle size. These characteristics suggest that the boards can be effectively used in various construction applications, including interior decoration, false ceilings, and potentially for furniture and door manufacturing when combined with appropriate coatings. This study not only exemplifies the valorization of plastic and agricultural wastes but also offers a practical, localized solution to global climate change challenges by promoting sustainable construction materials.展开更多
Five types of polyurea elastomers were synthesized by changing the isocyanate component and the mechanical properties of polyurea materials were measured. Fiber-reinforced cement boards(FRCB)strengthened by polyurea w...Five types of polyurea elastomers were synthesized by changing the isocyanate component and the mechanical properties of polyurea materials were measured. Fiber-reinforced cement boards(FRCB)strengthened by polyurea with different formulations were processed, and a series of experiments were carried out on the specimens with gas explosion devices. The results showed that the conventional mechanical properties of different types of polyureas had their own advantages. Based on the gas explosion overpressure criterion, the blast resistances of reinforced plates were quantitatively evaluated,and the best polyurea was selected to guide the formulation design. The three typical failure modes of polyurea-reinforced FRCBs were flexural, shear, and flexural-shear failure. Dynamic thermodynamics and shock wave spectral analysis revealed that the polyurea did not undergo a glass transition in the gas explosion tests but retained its elastic properties, allowing it to effectively wrap the fragments formed by the brittle substrates.展开更多
文摘H-steel all-bolted connection steel frame structures with heat preservation and decoration composite wall boards were investigated and the seismic performances of three scaled specimens were studied.The failure modes,hysteresis curves,bearing capacity,ductility,energy dissipation capacity,stiffness degradation and strain distribution were discussed.The calculation method of structural theoretical internal force was presented.The results showed that the overall structural seismic performance was better,and the structural ductility met the demands of elastic-plastic inter-story drift angle for seismic design.The H-steel weak-axis connection structure obtained better energy dissipation capacity,and its bearing capacity and stiffness were slightly different from the strong-axis connection.The heat preservation and decoration performance of composite wallboard and the all-bolted connection of the steel frame realized prefabrication during the whole construction period.The plastic hinge of the steel beam can be moved outwards because of the L-angles,which effectively avoids stress concentration in joint areas and expands the plastic hinge range.The errors between the theoretical structural capacity calculated by the plastic analysis method and the test results were within 2.44%.In addition,structural failure mechanisms and bearing capacities were verified by the finite element(FE)analysis,and the effects of the main parameters on the structures were investigated.The FE verification results were the same as in the test.The research results provide theoretical support and technical guidance for the application of thermal insulation and decorative composite wall panels in H-shaped steel all-bolted steel frames.
文摘Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate ions,favors the longitudinal growth of the crystalline form of the hydration product,which was relatively simple and had the highest length to width(L/D)ratio.At the same time,MF can also improve L/D ratio of gypsum hydration products,which favors the formation of hydrated whiskers.Finally,in a composite system composed of hemihydrate gypsum,MF,and glass fibers,when dilute sulfuric acid was used to regulate pH=3-4,the tight binding formed among the components of the composite system compared to pH=5-6.The hydration product of gypsum adheres tightly to glass fiber surface and produces a good cross-linking and binding effect with MF.The flexural strength,compressive strength,elastic modulus,and water absorption of the desulphurized gypsum composite board is 22.7 MPa,39.8 MPa,5608 MPa,and 1.8%,respectively.
文摘This research aims to measure the current gender representation in membership of boards of directors,and to study the factors affecting the presence of women on boards.The results of the study will support the decision makers and policy makers at all levels by providing knowledge that contributes to bridging the current gap in participation of women boards.The methodology used in this research is the descriptive analytical approach,which relies on quantitative methods in the process of collecting and analyzing data.This study represents the boards of directors in the three sectors(public,private,and non-profit)in the Kingdom of Saudi Arabia,The study sample contained 350 targets,where a random sample of 150 people in the public sector,100 people in the private sector,and 100 people in the non-profit sector were selected.The research result found that the majority of the responses believe that the lack of experience and training,and social factors,are the most impact areas of explaining the reasons for the existence of a gap in women’s membership in boards of directors in the three sectors.And the most important reasons for the existence of a gender gap in board membership are:there is no statutory minimum percentage for women’s representation on boards of directors,and scarcity of female competencies in general,and the lack of women occupying leadership positions.
基金supported by the Ministry of Education Humanities and Social Science Research Project(No.23YJAZH034)The Postgraduate Research and Practice Innovation Program of Jiangsu Province(Nos.SJCX24_2147,SJCX24_2148)+1 种基金National Computer Basic Education Research Project in Higher Education Institutions(Nos.2024-AFCEC-056,2024-AFCEC-057)Enterprise Collaboration Project(Nos.Z421A22349,Z421A22304,Z421A210045).
文摘Printed circuit boards(PCBs)provide stable connections between electronic components.However,defective printed circuit boards may cause the entire equipment system to malfunction,resulting in incalculable losses.Therefore,it is crucial to detect defective printed circuit boards during the generation process.Traditional detection methods have low accuracy in detecting subtle defects in complex background environments.In order to improve the detection accuracy of surface defects on industrial printed circuit boards,this paper proposes a residual large kernel network based on YOLOv5(You Only Look Once version 5)for PCBs surface defect detection,called YOLO-RLC(You Only Look Once-Residual Large Kernel).Build a deep large kernel backbone to expand the effective field of view,capture global informationmore efficiently,and use 1×1 convolutions to balance the depth of the model,improving feature extraction efficiency through reparameterization methods.The neck network introduces a bidirectional weighted feature fusion network,combined with a brand-new noise filter and feature enhancement extractor,to eliminate noise information generated by information fusion and recalibrate information from different channels to improve the quality of deep features.Simplify the aspect ratio of the bounding box to alleviate the issue of specificity values.After training and testing on the PCB defect dataset,our method achieved an average accuracy of 97.3%(mAP50)after multiple experiments,which is 4.1%higher than YOLOv5-S,with an average accuracy of 97.6%and an Frames Per Second of 76.7.The comparative analysis also proves the superior performance and feasibility of YOLO-RLC in PCB defect detection.
基金supported by the National Natural Science Foundation of China(No.61976083)Hubei Province Key R&D Program of China(No.2022BBA0016).
文摘Printed Circuit Board(PCB)surface tiny defect detection is a difficult task in the integrated circuit industry,especially since the detection of tiny defects on PCB boards with large-size complex circuits has become one of the bottlenecks.To improve the performance of PCB surface tiny defects detection,a PCB tiny defects detection model based on an improved attention residual network(YOLOX-AttResNet)is proposed.First,the unsupervised clustering performance of the K-means algorithm is exploited to optimize the channel weights for subsequent operations by feeding the feature mapping into the SENet(Squeeze and Excitation Network)attention network;then the improved K-means-SENet network is fused with the directly mapped edges of the traditional ResNet network to form an augmented residual network(AttResNet);and finally,the AttResNet module is substituted for the traditional ResNet structure in the backbone feature extraction network of mainstream excellent detection models,thus improving the ability to extract small features from the backbone of the target detection network.The results of ablation experiments on a PCB surface defect dataset show that AttResNet is a reliable and efficient module.In Torify the performance of AttResNet for detecting small defects in large-size complex circuit images,a series of comparison experiments are further performed.The results show that the AttResNet module combines well with the five best existing target detection frameworks(YOLOv3,YOLOX,Faster R-CNN,TDD-Net,Cascade R-CNN),and all the combined new models have improved detection accuracy compared to the original model,which suggests that the AttResNet module proposed in this paper can help the detection model to extract target features.Among them,the YOLOX-AttResNet model proposed in this paper performs the best,with the highest accuracy of 98.45% and the detection speed of 36 FPS(Frames Per Second),which meets the accuracy and real-time requirements for the detection of tiny defects on PCB surfaces.This study can provide some new ideas for other real-time online detection tasks of tiny targets with high-resolution images.
文摘This study tackles current environmental challenges by developing innovative and eco-friendly particle boards utilizing sorghum husk, combined with recycled expanded polystyrene (EPS). This dual eco-responsible approach valorizes sorghum husk, often deemed agricultural waste, and repurposes EPS, a plastic waste, thus contributing to CO2 emission reduction and effective waste management. The manufacturing process involves dissolving recycled polystyrene within a solvent to create a binder, which is then mixed with sorghum husk and cold-pressed into composite boards. The study explores the impact of two particle sizes (fine and coarse) and two different concentrations of the recycled EPS binder. Results demonstrate significant variations in the boards’ mechanical properties, displaying a range of Modulus of Rupture (MOR) from 0.84 MPa to 3.85 MPa, and Modulus of Elasticity (MOE) spanning from 658.13 MPa to 1313.25 MPa, influenced by the binder concentration and particle size. These characteristics suggest that the boards can be effectively used in various construction applications, including interior decoration, false ceilings, and potentially for furniture and door manufacturing when combined with appropriate coatings. This study not only exemplifies the valorization of plastic and agricultural wastes but also offers a practical, localized solution to global climate change challenges by promoting sustainable construction materials.
基金funded by National Natural Science Foundation of China(No.12002392).
文摘Five types of polyurea elastomers were synthesized by changing the isocyanate component and the mechanical properties of polyurea materials were measured. Fiber-reinforced cement boards(FRCB)strengthened by polyurea with different formulations were processed, and a series of experiments were carried out on the specimens with gas explosion devices. The results showed that the conventional mechanical properties of different types of polyureas had their own advantages. Based on the gas explosion overpressure criterion, the blast resistances of reinforced plates were quantitatively evaluated,and the best polyurea was selected to guide the formulation design. The three typical failure modes of polyurea-reinforced FRCBs were flexural, shear, and flexural-shear failure. Dynamic thermodynamics and shock wave spectral analysis revealed that the polyurea did not undergo a glass transition in the gas explosion tests but retained its elastic properties, allowing it to effectively wrap the fragments formed by the brittle substrates.