The vertical-vertical noise cross-correlation functions(NCFs)between two seismic arrays,the Japan F-net and Chin Array phase Ⅱ,are calculated using continuous recordings during 2013-2016.After array interferometry to...The vertical-vertical noise cross-correlation functions(NCFs)between two seismic arrays,the Japan F-net and Chin Array phase Ⅱ,are calculated using continuous recordings during 2013-2016.After array interferometry to obtain bin stacked NCFs,clear body waves are retrieved at different period bands.Teleseismic direct P waves for distance 15-40 degrees are observed between short period 3-10 s while core reflected PcP/ScS waves are more obvious for longer period 30-60 s.The signal-to-noise-ratio(SNR)of the short period P waves reaches its highest point with bin widths around 20 km while SNRs of PcP and ScS increase slowly with bin width.All those body waves demonstrate clear directivity with strong signals traveling from the east.The time-lapse SNR variations for the PcP and ScS show correlation with the occurrence of major earthquakes,while the P-wave SNR demonstrates seasonal variations with additional contribution from major earthquakes.The present results suggest teleseismic body waves can be retrieved through bin stacking,though further processing is still necessary to obtain finer waveforms such as P wave triplications.展开更多
Theoretical and experimental studies indicate that complete Green's Function can be retrieved from cross-correlation in a diffuse field. High SNR(signal-to-noise ratio) surface waves have been extracted from cross-...Theoretical and experimental studies indicate that complete Green's Function can be retrieved from cross-correlation in a diffuse field. High SNR(signal-to-noise ratio) surface waves have been extracted from cross-correlations of long-duration ambient noise across the globe. Body waves, not extracted in most of ambient noise studies, are thought to be more difficult to retrieve from regular ambient noise data processing. By stacking cross-correlations of ambient noise in 50 km inter-station distance bins in China, western United States and Europe, we observed coherent 20–100 s core phases(Sc S, PKIKPPKIKP, PcP PKPPKP) and crustal-mantle phases(Pn, P, PL, Sn, S, SPL, SnS n, SS, SSPL) at distances ranging from 0 to 4000 km. Our results show that these crustal-mantle phases show diverse characteristics due to different substructure and sources of body waves beneath different regions while the core phases are relatively robust and can be retrieved as long as stations are available. Further analysis indicates that the SNR of these body-wave phases depends on a compromise between stacking fold in spatial domain and the coherence of pre-stacked cross-correlations. Spatially stacked cross-correlations of seismic noise can provide new virtual seismograms for paths that complement earthquake data and that contain valuable information on the structure of the Earth. The extracted crustal-mantle phases can be used to study lithospheric heterogeneities and the robust core phases are significantly useful to study the deep structure of the Earth, such as detecting fine heterogeneities of the core-mantle boundary and constraining differential rotation of the inner core.展开更多
A new 3D velocity model of the crust and upper mantle in the southeastern (SE) margin of the Tibetan plateau was obtained by joint inversion of body- and sur- face-wave data. For the body-wave data, we used 7190 eve...A new 3D velocity model of the crust and upper mantle in the southeastern (SE) margin of the Tibetan plateau was obtained by joint inversion of body- and sur- face-wave data. For the body-wave data, we used 7190 events recorded by 102 stations in the SE margin of the Tibetan plateau. The surface-wave data consist of Rayleigh wave phase velocity dispersion curves obtained from ambient noise cross-correlation analysis recorded by a dense array in the SE margin of the Tibetan plateau. The joint inversion clearly improves the Vs model because it is constrained by both data types. The results show that at around 10 km depth there are two low-velocity anomalies embedded within three high-velocity bodies along the Longmenshan fault system. These high-velocity bodies correspond well with the Precambrian massifs, and the two located to the northeast of 2013 Ms 7.0 Lushan earthquake are associated with high fault slip areas during the 2008 Wenchuan earthquake. The aftershock gap between 2013 Lushan earthquake and 2008 Wenchuan earthquake is associated with low-velocity anomalies, which also acts as a barrier zone for ruptures of two earthquakes. Generally large earthquakes (M 〉 5) in the region occurring from 2008 to 2015 are located around the high-velocity zones, indicating that they may act as asperities for these large earthquakes. Joint inversion results also clearly show that there exist low-velocity or weak zones in the mid-lower crust, which are not evenly distributed beneath the SE margin of Tibetan plateau.展开更多
Distributed Acoustic Sensing(DAS) is an emerging technique for ultra-dense seismic observation, which provides a new method for high-resolution sub-surface seismic imaging. Recently a large number of linear DAS arrays...Distributed Acoustic Sensing(DAS) is an emerging technique for ultra-dense seismic observation, which provides a new method for high-resolution sub-surface seismic imaging. Recently a large number of linear DAS arrays have been used for two-dimensional S-wave near-surface imaging in urban areas. In order to explore the feasibility of three-dimensional(3D) structure imaging using a DAS array, we carried out an active source experiment at the Beijing National Earth Observatory. We deployed a 1 km optical cable in a rectangular shape, and the optical cable was recast into 250 sensors with a channel spacing of 4 m. The DAS array clearly recorded the P, S and surface waves generated by a hammer source. The first-arrival P wave travel times were first picked with a ShortTerm Average/Long-Term Average(STA/LTA) method and further manually checked. The P-wave signals recorded by the DAS are consistent with those recorded by the horizontal components of short-period seismometers. At shorter source-receiver distances, the picked P-wave arrivals from the DAS recording are consistent with vertical component recordings of seismometers, but they clearly lag behind the latter at greater distances.This is likely due to a combination of the signal-to-noise ratio and the polarization of the incoming wave. Then,we used the Tomo DD software to invert the 3D P-wave velocity structure for the uppermost 50 m with a resolution of 10 m. The inverted P-wave velocity structures agree well with the S-wave velocity structure previously obtained through ambient noise tomography. Our study indicates the feasibility of 3D near-surface imaging with the active source and DAS array. However, the inverted absolute velocity values at large depths may be biased due to potential time shifts between the DAS recording and seismometer at large source-receiver distances.展开更多
Centroid depth of earthquakes is essential for seismic hazard mitigation. But, various studies provided different solutions for the centroid depth of the damaging 2013 Lushan earthquake, thus hindering further studies...Centroid depth of earthquakes is essential for seismic hazard mitigation. But, various studies provided different solutions for the centroid depth of the damaging 2013 Lushan earthquake, thus hindering further studies of the earthquake processes. To resolve its centroid depth and assess the uncertainties, we apply the teleseismic cut and paste method to invert for centroid depth with teleseismic body waves in the epicentral distance of 300-90~. We performed the inversion for P waves only as well the case of both P and SH waves and found that both cases lead to depth solutions with difference less than 0.5 km. We also investigated the effects on depth inversion from azimuth gap of seismic stations, source duration, and comer fre- quency of filter. These various tests show that even azi- muthal distribution of seismic stations is helpful for accurate depth inversion. It is also found that estimate of centroid depth is sensitive to source duration. Moreover, the depth is biased to larger values when corner frequency of low-pass filter is very low. The uncertainty in the velocity model can also generate some error in the depth estimation (- 1.0 km).With all the above factors consid- ered, the centroid depth of Lushan earthquake is proposed to be around 12 km, with uncertainty about 2 km.展开更多
By using orthogonal regression method, a systematic comparison is made between body wave magnitudes determined by Institute of Geophysics of China Earthquake Administration (IGCEA) and National Earthquake Information ...By using orthogonal regression method, a systematic comparison is made between body wave magnitudes determined by Institute of Geophysics of China Earthquake Administration (IGCEA) and National Earthquake Information Center of US Geological Survey (USGS/NEIC) on the basis of observation data from China and US seismograph networks between 1983 and 2004. The result of orthogonal regression shows no systematic error between body wave magnitude mb determined by IGCEA and mb (NEIC). Provided that mb (NEIC) is taken as the benchmark, body wave magnitude determined by IGCEA is greater by 0.2-0.1 than the magnitude determined by NEIC for M=3.5-4.5 earthquakes; for M=5.0-5.5 earthquakes, there is no difference; and for M greater than or equal 6.0 earthquakes, it is smaller by no more than 0.2. This is consistent with the result of comparison by IDC (International Data Center).展开更多
An M_S6.8 strong earthquake took place in Jiashi,Xinjiang on February 24 of 2003.The digital wave form data recorded in Kashi and Wushi stations are selected to inverse the moment tensor solutions for the strong earth...An M_S6.8 strong earthquake took place in Jiashi,Xinjiang on February 24 of 2003.The digital wave form data recorded in Kashi and Wushi stations are selected to inverse the moment tensor solutions for the strong earthquake and the moderate and small earthquakes before and after it(108 earthquakes in 2001~2004).67 focal mechanism solutions have been calculated,and the results agree with those from Harvard University and USGS.The analysis reveals that before the strong earthquake,the moderate and small earthquake distribution was dispersed,and after the event the distribution was mainly concentrated around the strong earthquake.Before the strong earthquake,the seismic faults of the mid and small events had the character of strike-slip and normal faulting,and after the event,they exhibit strike-slip and thrust faulting.The region is dominated by near-NS horizontal compression from the southern block after the strong earthquake.展开更多
In this paper a nonlinear diffraction theory due to Stoke's 2nd-order wave for computing the wave force on the large body is presented. The radiation condition as r-∞ for 2nd-order scattered potential has been st...In this paper a nonlinear diffraction theory due to Stoke's 2nd-order wave for computing the wave force on the large body is presented. The radiation condition as r-∞ for 2nd-order scattered potential has been studied in connection with asymptotic solutions. A numerical procedure has been developed for the purpose of calculating the nonlinear wave force on the large body with arbitrary shape.展开更多
Body waves retrieved from ambient noise cross-correlation functions(NCFs) have been reported by more and more recent studies in addition to the dominant recovered surface waves. And one of important applications of ...Body waves retrieved from ambient noise cross-correlation functions(NCFs) have been reported by more and more recent studies in addition to the dominant recovered surface waves. And one of important applications of these recovered body waves is to investigate the structure of discontinuities within the mantle transition zone(MTZ). In this study, clear body wave phases reflected from the MTZ discontinuities at 410 km and 660 km have been observed on the NCFs in the frequency band of 0.1–0.2 Hz from a dense regional seismic array in southwest China. The original timedomain reflected signals in the NCFs were first converted to the depth-domain NCFs based on a velocity model before they were further stacked spatially within different bins. Then the depth-domain NCFs were stacked to investigate the lateral variations of the MTZ discontinuities, that is, the 410-km and 660-km discontinuities. Our results exhibit a simple and lateral coherent P;P phase and a much more complicated P;P phase along two profiles, which are in good agreement with mineralogical prediction and recent receiver function studies in the same area. This interferometric method can provide stable reflected body wave phases mainly in the frequency band 0.1–0.2 Hz due to the secondary microseism noise, which can be potentially used for high-resolution mantle interface imaging. This approach is also a good complement to traditional imaging methods, such as receiver function imaging.展开更多
Long-time cross correlation of ambient noise has been proved as a powerful tool to extract Green's function between two receivers. The study of composition of ambient noise is important for a better understanding of ...Long-time cross correlation of ambient noise has been proved as a powerful tool to extract Green's function between two receivers. The study of composition of ambient noise is important for a better understanding of this method. Previous studies confirm that ambient noise in the long period (3 s and longer) mostly consists of surface wave, and 0.25-2.5 s noise consists more of body waves. In this paper, we perform cross correlation processing at much higher frequency (30-70 Hz) using ambient noise recorded by a small aperture array. No surface waves emerge from noise correlation function (NCF), but weak P waves emerge. The absence of surface wave in NCF is not due to high attenuation since surface waves are strong from active source, therefore probably the high ambient noise mostly consists of body wave and lacks surface wave. Origin of such high frequency body waves in ambient noise remains to be studied.展开更多
As a combination of bio-mechanism and engineering technology, robot fish has become a multidisci- plinary research that mainly involves both hydrodynamics-based control and actuation technology. This paper presents a ...As a combination of bio-mechanism and engineering technology, robot fish has become a multidisci- plinary research that mainly involves both hydrodynamics-based control and actuation technology. This paper presents a simplified propulsive model for carangiform propulsion, which is a swimming mode suitable for high speed and high efficiency. The carangiform motion is modeled as an N-joint nscillating mechanism that is composed of two basic components: the streamlined fish body represented by a planar spline curve and its hmate caudal tail by an oscillating foil. The speed of fish's straight swimming is adjusted by modulating the joint's oscillating frequency, and its orientation is tuned by different joint's deflection. The results from actual experiment showed that the proposed simplified propulsive model could be a viable eandidate for application in aquatic: swimming vehicles.展开更多
The amount of seismological data is rapidly increasing with accumulating observational time and increasing number of stations, requiring modern technique to provide adequate computing power. In present study, we propo...The amount of seismological data is rapidly increasing with accumulating observational time and increasing number of stations, requiring modern technique to provide adequate computing power. In present study, we proposed a framework to calculate large-scale noise crosscorrelation functions(NCFs) using public cloud service from ALIYUN. The entire computation is factorized into small pieces which are performed parallelly on specified number of virtual servers provided by the cloud. Using data from most seismic stations in China, five NCF databases are built. The results show that, comparing to the time cost using a single server, the entire time can be reduced over two orders of magnitude depending number of evoked virtual servers. This could reduce computation time from months to less than 12 hours. Based on obtained massive NCFs, the global body waves are retrieved through array interferometry and agree well with those from earthquakes. This leads to a solution to process massive seismic dataset within an affordable time and is applicable to other large-scale computing in seismological researches.展开更多
Active source seismic method is generally used to image subsurface structures for resource exploration,including oil,gas and coal.Although it can provide highresolution subsurface structures,due to some economic and e...Active source seismic method is generally used to image subsurface structures for resource exploration,including oil,gas and coal.Although it can provide highresolution subsurface structures,due to some economic and environmental restrictions,it is not suitable in some cases.In recent 20 years,passive seismic survey based on ambient noise seismic interferometry(ANSI)has started to be widely used in imaging subsurface structures.In comparison,ANSI does not need active sources and can image subsurface structures at different depths as a lowcost alternative to active seismic exploration.展开更多
On May 21,2021,an MS6.4 earthquake occurred in Yangbi,Yunnan province,China,which exhibited typical foreshock-mainshock-aftershock characteristics.To better understand the velocity structure of the focal area and adja...On May 21,2021,an MS6.4 earthquake occurred in Yangbi,Yunnan province,China,which exhibited typical foreshock-mainshock-aftershock characteristics.To better understand the velocity structure of the focal area and adjacent fault zones,Pg/Sg travel times at 12 seismic stations for the local earthquakes with ML≥1.5 from 2009-2019 and the Yangbi sequence in May of 2021 were used to invert the three-dimensional(3D)structures for both vP and v_(P)/v_(S).The obtained structure extends deeply to 15 km for area(25°N-26.5°N,99.5°E-101°E)at a horizontal resolution of 10×10 km,and the accuracy of the v_(P) velocity was verified using airgun signals excited by the Binchuan Airgun Transmitting Seismic Station(BATSS).The resulting v_(P) and v^(P)/v_(S) images correlate with existing fault zones and the Yangbi sequence,including:(1)The shallow velocity structure at 0 km agrees with local topography,where the Binchuan basin exhibits low-v_(P) and high-v_(P)/v_(S) values.From 3-15 km,v_(P) and v_(P)/v_(S) show variations,and the boundaries are consistent with the main faults(e.g.,the Weixi-Qiaohou-Weishan,Honghe,and Chenghai faults).(2)The largest foreshock(M_(S)5.6),main-shock(MS6.4),and largest aftershock(M_(S)5.2)occurred near the boundaries where both vP and v_(P)/v_(S) have clear contrasts.(3)Small earthquakes are also concentrated in the transition zone between high-and low-vP and v_(P)/v_(S) anomalies,and are biased toward low-v_(P)/v_(S) zones.(4)Boundaries in v_(P) and v_(P)/v_(S) are observed at 20 km west of the Weixi-Qiaohou-Weishan fault,indicating that there may exist one hidden fault.展开更多
A mechanical design method of mbet fish is introduced in this paper. Based on this method, an autonomous 3-Dimension (3D) locomotion mbet fish with two pectoral fins and a caudal fin is developed. The pectoral fin m...A mechanical design method of mbet fish is introduced in this paper. Based on this method, an autonomous 3-Dimension (3D) locomotion mbet fish with two pectoral fins and a caudal fin is developed. The pectoral fin mechanism has 3 degrees of freedom (3-DOFs), which enables the mbet fish to realize yawing and pitching motions by controlling two pectoral fins. And the eandal fin mechanism is designed based on fish body wave curve fitting. The forward velocity can be adjusted by changing the eandal mechanism' s oscillating frequency. Finally a physical implementation of the robot fish and experimental results are given.展开更多
Regarding flowing granular media as weak transverse isotropic media, the phase velocity expressions of wave P, wave SH and wave SV were deduced, the propagation characteristics of waves in flowing granular media were ...Regarding flowing granular media as weak transverse isotropic media, the phase velocity expressions of wave P, wave SH and wave SV were deduced, the propagation characteristics of waves in flowing granular media were analyzed. The experiments show that vibration has great influence on granular fluidity. The wavefront of wave P is elliptic or closely elliptic, the wavefront of wave SH is elliptic, and the wavefront of wave SV is not elliptic. Wave propagation in the granular flowing field attenuates layer after layer. The theory and experiment both substantiate that the density difference is the key factor which leads to the attenuation of vibrating energy. In terms of characteristics of wave propagation one can deduce that vibrating waves have less influence on flowability of granules when the amplitude and frequency are small. However, when the amplitude and frequency increase gradually, the eccentricity of ellipsoid, the viscosity resistance and inner friction among granules, and shear intensity of granules decrease, and the loosening coefficient of granules increases, which shows the granules have better flowability.展开更多
Two-dimensional internal waves generated by a moving flat body in a continuous- ly stratified fluid are investigated by using three kinds of flow-visualization methods:electrolytic precipitation,hydrogen bubbles,and d...Two-dimensional internal waves generated by a moving flat body in a continuous- ly stratified fluid are investigated by using three kinds of flow-visualization methods:electrolytic precipitation,hydrogen bubbles,and dye streaks.Attentions are paid mainly to the generation and propagation process in the upstream region under low internal Froude number(1/10π<F_r<1/2π).The features of the upstream disturbances as well as their relationship with stratification number K (K=1/F_r) are illustrated.The corresponding theoretical analysis is briefly presented,and by comparison,the experimental and theoretical results agree well.展开更多
By linear regression and orthogonal regression methods, comparisons are made between different magnitudes (local magnitude ML, surface wave magnitudes Ms and MsT, long-period body wave magnitude mB and short-period b...By linear regression and orthogonal regression methods, comparisons are made between different magnitudes (local magnitude ML, surface wave magnitudes Ms and MsT, long-period body wave magnitude mB and short-period body wave magnitude mb) determined by Institute of Geophysics, China Earthquake Administration, on the basis of observation data collected by China Seismograph Network between 1983 and 2004. Empirical relations between different magnitudes have been obtained. The result shows that: ① As different magnitude scales reflect radiated energy by seismic waves within different periods, earthquake magnitudes can be described more objectively by using different scales for earthquakes of different magnitudes. When the epicentral distance is less than 1000 km, local magnitude ME can be a preferable scale; In case M〈4.5, there is little difference between the magnitude scales; In case 4.5〈M〈6.0, mB〉Ms, i.e., Ms underestimates magnitudes of such events, therefore, mB can be a better choice; In case M〉6.0, Ms〉mB〉mb, both mB and mb underestimate the magnitudes, so Ms is a preferable scale for determining magnitudes of such events (6.0〈M〈8.5); In case M〉8.5, a saturation phenomenon appears in Ms, which cannot give an accurate reflection of the magnitudes of such large events; ② In China, when the epicentral distance is less than 1 000 km, there is almost no difference between ME and Ms, and thus there is no need to convert between the two magnitudes in practice; ③ Although Ms and Ms7 are both surface wave magnitudes, Ms is in general greater than Ms7 by 0.2~0.3 magnitude, because different instruments and calculation formulae are used; ④ mB is almost equal to mb for earthquakes around mB4.0, but mB is larger than mb for those of mB〉4.5, because the periods of seismic waves used for measuring mB and mb are different though the calculation formulae are the same.展开更多
Seismic anisotropy is an effective feature to study the inner structure of the Earth.In complex tectonic area,the assumption of single-layer anisotropy is sometimes not well consistent with the observed data;thus,the ...Seismic anisotropy is an effective feature to study the inner structure of the Earth.In complex tectonic area,the assumption of single-layer anisotropy is sometimes not well consistent with the observed data;thus,the assumption of multi-layered(i.e.stratified)anisotropy should be considered.At present,the main methods to study anisotropy include receiver functions,shear wave splitting from local and teleseismic events(SKS,SKKS,and PKS,hereafter collectively called XKS),P-and Pn wave travel time inversion,surface wave inversion from far-field earthquakes and ambient noise.Each of the above method has its own advantages and limitations.Thus,one or more of the above methods are often combined to characterize multi-layered anisotropy,of which the depth range of anisotropic layers are different.This paper reviews the research progress of multi-layered anisotropy for the purpose of providing a basis for future seismic anisotropy investigations.展开更多
In this paper an approach to estimate near-surface seismodynamic features by using distance- amplitude reduction with geotectonic characteristics of the upper crust in the Eastern Anatolia is discussed. The data set u...In this paper an approach to estimate near-surface seismodynamic features by using distance- amplitude reduction with geotectonic characteristics of the upper crust in the Eastern Anatolia is discussed. The data set used in this study consists of 287 regional earthquakes in the magnitude range of 3.0 - 6.1, epicentral distances between 15 km and 202 km and their focal depths reaching up to 13 km. The entire study area is divided into three tectonic blocks according to the distribu-tions of the earthquakes and the location of the fault segment. The estimated quality factor QP-S??values for the three regions ranged from 28.6 to 65, highlighting the regional differences in the seismodynamics of the crust. In Eastern Anatolia, the relatively low average quality factor values (QP: 37, QS: 55) show average (0.217) and average values ( P: 0.0166,?S: 0.017). The lowest QS?/QP? value 1.39 and the highest VP?/VS? value 1.65 are found at the Mus station. The highest Poisson’s ratio? ?and lowest absorption coefficient? ?were found in the Mus area. The variation in Q?,? ?and? indicates that the northern part (Erc and Kem region) of East Anatolia appears to be more active and heterogeneous compared with the southern part (Mus region) of East Anatolia.展开更多
基金sponsored by the National Key R&D Program of China(No.2018YFC1503200)National Science Foundation of China(No.42004046)。
文摘The vertical-vertical noise cross-correlation functions(NCFs)between two seismic arrays,the Japan F-net and Chin Array phase Ⅱ,are calculated using continuous recordings during 2013-2016.After array interferometry to obtain bin stacked NCFs,clear body waves are retrieved at different period bands.Teleseismic direct P waves for distance 15-40 degrees are observed between short period 3-10 s while core reflected PcP/ScS waves are more obvious for longer period 30-60 s.The signal-to-noise-ratio(SNR)of the short period P waves reaches its highest point with bin widths around 20 km while SNRs of PcP and ScS increase slowly with bin width.All those body waves demonstrate clear directivity with strong signals traveling from the east.The time-lapse SNR variations for the PcP and ScS show correlation with the occurrence of major earthquakes,while the P-wave SNR demonstrates seasonal variations with additional contribution from major earthquakes.The present results suggest teleseismic body waves can be retrieved through bin stacking,though further processing is still necessary to obtain finer waveforms such as P wave triplications.
基金supported by the National Science Foundation of China (No. 41374059)the Special Fund for Basic Scientific Research of Central Colleges, China University of Geosciences (Wuhan) (Nos. CUG090106 and #CUGL100402).
文摘Theoretical and experimental studies indicate that complete Green's Function can be retrieved from cross-correlation in a diffuse field. High SNR(signal-to-noise ratio) surface waves have been extracted from cross-correlations of long-duration ambient noise across the globe. Body waves, not extracted in most of ambient noise studies, are thought to be more difficult to retrieve from regular ambient noise data processing. By stacking cross-correlations of ambient noise in 50 km inter-station distance bins in China, western United States and Europe, we observed coherent 20–100 s core phases(Sc S, PKIKPPKIKP, PcP PKPPKP) and crustal-mantle phases(Pn, P, PL, Sn, S, SPL, SnS n, SS, SSPL) at distances ranging from 0 to 4000 km. Our results show that these crustal-mantle phases show diverse characteristics due to different substructure and sources of body waves beneath different regions while the core phases are relatively robust and can be retrieved as long as stations are available. Further analysis indicates that the SNR of these body-wave phases depends on a compromise between stacking fold in spatial domain and the coherence of pre-stacked cross-correlations. Spatially stacked cross-correlations of seismic noise can provide new virtual seismograms for paths that complement earthquake data and that contain valuable information on the structure of the Earth. The extracted crustal-mantle phases can be used to study lithospheric heterogeneities and the robust core phases are significantly useful to study the deep structure of the Earth, such as detecting fine heterogeneities of the core-mantle boundary and constraining differential rotation of the inner core.
基金supported by the Natural National Science Foundation of China under grant number 41474039China National Special Fund for Earthquake Scientific Research in Public Interest under grant number 2016 CESE 0201+1 种基金Shanghai Committee of Science and Technology under grant number 14231202600the Fundamental Research Funds for the Central Universities under grant number WK2080000053
文摘A new 3D velocity model of the crust and upper mantle in the southeastern (SE) margin of the Tibetan plateau was obtained by joint inversion of body- and sur- face-wave data. For the body-wave data, we used 7190 events recorded by 102 stations in the SE margin of the Tibetan plateau. The surface-wave data consist of Rayleigh wave phase velocity dispersion curves obtained from ambient noise cross-correlation analysis recorded by a dense array in the SE margin of the Tibetan plateau. The joint inversion clearly improves the Vs model because it is constrained by both data types. The results show that at around 10 km depth there are two low-velocity anomalies embedded within three high-velocity bodies along the Longmenshan fault system. These high-velocity bodies correspond well with the Precambrian massifs, and the two located to the northeast of 2013 Ms 7.0 Lushan earthquake are associated with high fault slip areas during the 2008 Wenchuan earthquake. The aftershock gap between 2013 Lushan earthquake and 2008 Wenchuan earthquake is associated with low-velocity anomalies, which also acts as a barrier zone for ruptures of two earthquakes. Generally large earthquakes (M 〉 5) in the region occurring from 2008 to 2015 are located around the high-velocity zones, indicating that they may act as asperities for these large earthquakes. Joint inversion results also clearly show that there exist low-velocity or weak zones in the mid-lower crust, which are not evenly distributed beneath the SE margin of Tibetan plateau.
基金supported by the National Key R&D Program of China(2022YFC3102202)the Chinese Academy of Sciences (CAS) Project for Young Scientists in Basic Research (YSBR-020)。
文摘Distributed Acoustic Sensing(DAS) is an emerging technique for ultra-dense seismic observation, which provides a new method for high-resolution sub-surface seismic imaging. Recently a large number of linear DAS arrays have been used for two-dimensional S-wave near-surface imaging in urban areas. In order to explore the feasibility of three-dimensional(3D) structure imaging using a DAS array, we carried out an active source experiment at the Beijing National Earth Observatory. We deployed a 1 km optical cable in a rectangular shape, and the optical cable was recast into 250 sensors with a channel spacing of 4 m. The DAS array clearly recorded the P, S and surface waves generated by a hammer source. The first-arrival P wave travel times were first picked with a ShortTerm Average/Long-Term Average(STA/LTA) method and further manually checked. The P-wave signals recorded by the DAS are consistent with those recorded by the horizontal components of short-period seismometers. At shorter source-receiver distances, the picked P-wave arrivals from the DAS recording are consistent with vertical component recordings of seismometers, but they clearly lag behind the latter at greater distances.This is likely due to a combination of the signal-to-noise ratio and the polarization of the incoming wave. Then,we used the Tomo DD software to invert the 3D P-wave velocity structure for the uppermost 50 m with a resolution of 10 m. The inverted P-wave velocity structures agree well with the S-wave velocity structure previously obtained through ambient noise tomography. Our study indicates the feasibility of 3D near-surface imaging with the active source and DAS array. However, the inverted absolute velocity values at large depths may be biased due to potential time shifts between the DAS recording and seismometer at large source-receiver distances.
文摘Centroid depth of earthquakes is essential for seismic hazard mitigation. But, various studies provided different solutions for the centroid depth of the damaging 2013 Lushan earthquake, thus hindering further studies of the earthquake processes. To resolve its centroid depth and assess the uncertainties, we apply the teleseismic cut and paste method to invert for centroid depth with teleseismic body waves in the epicentral distance of 300-90~. We performed the inversion for P waves only as well the case of both P and SH waves and found that both cases lead to depth solutions with difference less than 0.5 km. We also investigated the effects on depth inversion from azimuth gap of seismic stations, source duration, and comer fre- quency of filter. These various tests show that even azi- muthal distribution of seismic stations is helpful for accurate depth inversion. It is also found that estimate of centroid depth is sensitive to source duration. Moreover, the depth is biased to larger values when corner frequency of low-pass filter is very low. The uncertainty in the velocity model can also generate some error in the depth estimation (- 1.0 km).With all the above factors consid- ered, the centroid depth of Lushan earthquake is proposed to be around 12 km, with uncertainty about 2 km.
基金Project ″Seismic Data Share″ from China Ministry of Science and Technology.
文摘By using orthogonal regression method, a systematic comparison is made between body wave magnitudes determined by Institute of Geophysics of China Earthquake Administration (IGCEA) and National Earthquake Information Center of US Geological Survey (USGS/NEIC) on the basis of observation data from China and US seismograph networks between 1983 and 2004. The result of orthogonal regression shows no systematic error between body wave magnitude mb determined by IGCEA and mb (NEIC). Provided that mb (NEIC) is taken as the benchmark, body wave magnitude determined by IGCEA is greater by 0.2-0.1 than the magnitude determined by NEIC for M=3.5-4.5 earthquakes; for M=5.0-5.5 earthquakes, there is no difference; and for M greater than or equal 6.0 earthquakes, it is smaller by no more than 0.2. This is consistent with the result of comparison by IDC (International Data Center).
基金sponsored by Seismic Foundation of Qinghai Province (2007A01)CENC(120302-0957-03)the Joint Earthquake Science Foundation of China with Grant No.104001 and 106086
文摘An M_S6.8 strong earthquake took place in Jiashi,Xinjiang on February 24 of 2003.The digital wave form data recorded in Kashi and Wushi stations are selected to inverse the moment tensor solutions for the strong earthquake and the moderate and small earthquakes before and after it(108 earthquakes in 2001~2004).67 focal mechanism solutions have been calculated,and the results agree with those from Harvard University and USGS.The analysis reveals that before the strong earthquake,the moderate and small earthquake distribution was dispersed,and after the event the distribution was mainly concentrated around the strong earthquake.Before the strong earthquake,the seismic faults of the mid and small events had the character of strike-slip and normal faulting,and after the event,they exhibit strike-slip and thrust faulting.The region is dominated by near-NS horizontal compression from the southern block after the strong earthquake.
文摘In this paper a nonlinear diffraction theory due to Stoke's 2nd-order wave for computing the wave force on the large body is presented. The radiation condition as r-∞ for 2nd-order scattered potential has been studied in connection with asymptotic solutions. A numerical procedure has been developed for the purpose of calculating the nonlinear wave force on the large body with arbitrary shape.
基金supported by China Earthquake Science Experiment Project,China Earthquake Administration(Nos.2017CESE0101 and 2016CESE0201)the National Natural Science Foundation of China(No.41574034)
文摘Body waves retrieved from ambient noise cross-correlation functions(NCFs) have been reported by more and more recent studies in addition to the dominant recovered surface waves. And one of important applications of these recovered body waves is to investigate the structure of discontinuities within the mantle transition zone(MTZ). In this study, clear body wave phases reflected from the MTZ discontinuities at 410 km and 660 km have been observed on the NCFs in the frequency band of 0.1–0.2 Hz from a dense regional seismic array in southwest China. The original timedomain reflected signals in the NCFs were first converted to the depth-domain NCFs based on a velocity model before they were further stacked spatially within different bins. Then the depth-domain NCFs were stacked to investigate the lateral variations of the MTZ discontinuities, that is, the 410-km and 660-km discontinuities. Our results exhibit a simple and lateral coherent P;P phase and a much more complicated P;P phase along two profiles, which are in good agreement with mineralogical prediction and recent receiver function studies in the same area. This interferometric method can provide stable reflected body wave phases mainly in the frequency band 0.1–0.2 Hz due to the secondary microseism noise, which can be potentially used for high-resolution mantle interface imaging. This approach is also a good complement to traditional imaging methods, such as receiver function imaging.
基金supported by Central Public-interest Scientific Institution Basal Research Fund (No. DQJB09B07)Knowledge Innovation Program of the Chinese Academy of Sciences under grant No. KZCX2-YW-116-1+1 种基金supported partially by National Natural Science Foundation of China (Nos. 40874095, 40730318 and 41004019)China Earthquake Administration Special Program Fund (Nos. 200808078 and 200808002)
文摘Long-time cross correlation of ambient noise has been proved as a powerful tool to extract Green's function between two receivers. The study of composition of ambient noise is important for a better understanding of this method. Previous studies confirm that ambient noise in the long period (3 s and longer) mostly consists of surface wave, and 0.25-2.5 s noise consists more of body waves. In this paper, we perform cross correlation processing at much higher frequency (30-70 Hz) using ambient noise recorded by a small aperture array. No surface waves emerge from noise correlation function (NCF), but weak P waves emerge. The absence of surface wave in NCF is not due to high attenuation since surface waves are strong from active source, therefore probably the high ambient noise mostly consists of body wave and lacks surface wave. Origin of such high frequency body waves in ambient noise remains to be studied.
文摘As a combination of bio-mechanism and engineering technology, robot fish has become a multidisci- plinary research that mainly involves both hydrodynamics-based control and actuation technology. This paper presents a simplified propulsive model for carangiform propulsion, which is a swimming mode suitable for high speed and high efficiency. The carangiform motion is modeled as an N-joint nscillating mechanism that is composed of two basic components: the streamlined fish body represented by a planar spline curve and its hmate caudal tail by an oscillating foil. The speed of fish's straight swimming is adjusted by modulating the joint's oscillating frequency, and its orientation is tuned by different joint's deflection. The results from actual experiment showed that the proposed simplified propulsive model could be a viable eandidate for application in aquatic: swimming vehicles.
基金supported by National Key R&D Program of China(No.2018YFC1503200)National Natural Science Foundation of China(Nos.41674061,41790463 and 41674058)
文摘The amount of seismological data is rapidly increasing with accumulating observational time and increasing number of stations, requiring modern technique to provide adequate computing power. In present study, we proposed a framework to calculate large-scale noise crosscorrelation functions(NCFs) using public cloud service from ALIYUN. The entire computation is factorized into small pieces which are performed parallelly on specified number of virtual servers provided by the cloud. Using data from most seismic stations in China, five NCF databases are built. The results show that, comparing to the time cost using a single server, the entire time can be reduced over two orders of magnitude depending number of evoked virtual servers. This could reduce computation time from months to less than 12 hours. Based on obtained massive NCFs, the global body waves are retrieved through array interferometry and agree well with those from earthquakes. This leads to a solution to process massive seismic dataset within an affordable time and is applicable to other large-scale computing in seismological researches.
基金a part of the joint Polish-Chinese FULLIMAGE project,which received funding in the SHENG call from National Natural Science Foundation of China(NSFC)under grant no.41961134001the Polish National Science Centre(NCN)under grant no.UMO-2018/30/Q/ST10/00680
文摘Active source seismic method is generally used to image subsurface structures for resource exploration,including oil,gas and coal.Although it can provide highresolution subsurface structures,due to some economic and environmental restrictions,it is not suitable in some cases.In recent 20 years,passive seismic survey based on ambient noise seismic interferometry(ANSI)has started to be widely used in imaging subsurface structures.In comparison,ANSI does not need active sources and can image subsurface structures at different depths as a lowcost alternative to active seismic exploration.
基金supported jointly by the Special Fund of the Institute of Geophysics,China Earthquake Administration(Grant Nos.DQJB20K36,DQJB19B29,and DQJB20B15)the National Natural Science Foundation of China(Grant Nos.41790462 and 41974069).
文摘On May 21,2021,an MS6.4 earthquake occurred in Yangbi,Yunnan province,China,which exhibited typical foreshock-mainshock-aftershock characteristics.To better understand the velocity structure of the focal area and adjacent fault zones,Pg/Sg travel times at 12 seismic stations for the local earthquakes with ML≥1.5 from 2009-2019 and the Yangbi sequence in May of 2021 were used to invert the three-dimensional(3D)structures for both vP and v_(P)/v_(S).The obtained structure extends deeply to 15 km for area(25°N-26.5°N,99.5°E-101°E)at a horizontal resolution of 10×10 km,and the accuracy of the v_(P) velocity was verified using airgun signals excited by the Binchuan Airgun Transmitting Seismic Station(BATSS).The resulting v_(P) and v^(P)/v_(S) images correlate with existing fault zones and the Yangbi sequence,including:(1)The shallow velocity structure at 0 km agrees with local topography,where the Binchuan basin exhibits low-v_(P) and high-v_(P)/v_(S) values.From 3-15 km,v_(P) and v_(P)/v_(S) show variations,and the boundaries are consistent with the main faults(e.g.,the Weixi-Qiaohou-Weishan,Honghe,and Chenghai faults).(2)The largest foreshock(M_(S)5.6),main-shock(MS6.4),and largest aftershock(M_(S)5.2)occurred near the boundaries where both vP and v_(P)/v_(S) have clear contrasts.(3)Small earthquakes are also concentrated in the transition zone between high-and low-vP and v_(P)/v_(S) anomalies,and are biased toward low-v_(P)/v_(S) zones.(4)Boundaries in v_(P) and v_(P)/v_(S) are observed at 20 km west of the Weixi-Qiaohou-Weishan fault,indicating that there may exist one hidden fault.
基金Supported by the National Natural Science Foundation of China (No. 50475179) and the National High Technology, Research and Development Program of China (No. 2006AAllz225).
文摘A mechanical design method of mbet fish is introduced in this paper. Based on this method, an autonomous 3-Dimension (3D) locomotion mbet fish with two pectoral fins and a caudal fin is developed. The pectoral fin mechanism has 3 degrees of freedom (3-DOFs), which enables the mbet fish to realize yawing and pitching motions by controlling two pectoral fins. And the eandal fin mechanism is designed based on fish body wave curve fitting. The forward velocity can be adjusted by changing the eandal mechanism' s oscillating frequency. Finally a physical implementation of the robot fish and experimental results are given.
基金TheNationalNaturalScienceFoundationofChina (No .5 0 0 740 34 )
文摘Regarding flowing granular media as weak transverse isotropic media, the phase velocity expressions of wave P, wave SH and wave SV were deduced, the propagation characteristics of waves in flowing granular media were analyzed. The experiments show that vibration has great influence on granular fluidity. The wavefront of wave P is elliptic or closely elliptic, the wavefront of wave SH is elliptic, and the wavefront of wave SV is not elliptic. Wave propagation in the granular flowing field attenuates layer after layer. The theory and experiment both substantiate that the density difference is the key factor which leads to the attenuation of vibrating energy. In terms of characteristics of wave propagation one can deduce that vibrating waves have less influence on flowability of granules when the amplitude and frequency are small. However, when the amplitude and frequency increase gradually, the eccentricity of ellipsoid, the viscosity resistance and inner friction among granules, and shear intensity of granules decrease, and the loosening coefficient of granules increases, which shows the granules have better flowability.
基金The project supported by National Natural Science Foundation of China.
文摘Two-dimensional internal waves generated by a moving flat body in a continuous- ly stratified fluid are investigated by using three kinds of flow-visualization methods:electrolytic precipitation,hydrogen bubbles,and dye streaks.Attentions are paid mainly to the generation and propagation process in the upstream region under low internal Froude number(1/10π<F_r<1/2π).The features of the upstream disturbances as well as their relationship with stratification number K (K=1/F_r) are illustrated.The corresponding theoretical analysis is briefly presented,and by comparison,the experimental and theoretical results agree well.
基金Special Project on Earthquake from Ministry of Science and Technology of China.
文摘By linear regression and orthogonal regression methods, comparisons are made between different magnitudes (local magnitude ML, surface wave magnitudes Ms and MsT, long-period body wave magnitude mB and short-period body wave magnitude mb) determined by Institute of Geophysics, China Earthquake Administration, on the basis of observation data collected by China Seismograph Network between 1983 and 2004. Empirical relations between different magnitudes have been obtained. The result shows that: ① As different magnitude scales reflect radiated energy by seismic waves within different periods, earthquake magnitudes can be described more objectively by using different scales for earthquakes of different magnitudes. When the epicentral distance is less than 1000 km, local magnitude ME can be a preferable scale; In case M〈4.5, there is little difference between the magnitude scales; In case 4.5〈M〈6.0, mB〉Ms, i.e., Ms underestimates magnitudes of such events, therefore, mB can be a better choice; In case M〉6.0, Ms〉mB〉mb, both mB and mb underestimate the magnitudes, so Ms is a preferable scale for determining magnitudes of such events (6.0〈M〈8.5); In case M〉8.5, a saturation phenomenon appears in Ms, which cannot give an accurate reflection of the magnitudes of such large events; ② In China, when the epicentral distance is less than 1 000 km, there is almost no difference between ME and Ms, and thus there is no need to convert between the two magnitudes in practice; ③ Although Ms and Ms7 are both surface wave magnitudes, Ms is in general greater than Ms7 by 0.2~0.3 magnitude, because different instruments and calculation formulae are used; ④ mB is almost equal to mb for earthquakes around mB4.0, but mB is larger than mb for those of mB〉4.5, because the periods of seismic waves used for measuring mB and mb are different though the calculation formulae are the same.
文摘Seismic anisotropy is an effective feature to study the inner structure of the Earth.In complex tectonic area,the assumption of single-layer anisotropy is sometimes not well consistent with the observed data;thus,the assumption of multi-layered(i.e.stratified)anisotropy should be considered.At present,the main methods to study anisotropy include receiver functions,shear wave splitting from local and teleseismic events(SKS,SKKS,and PKS,hereafter collectively called XKS),P-and Pn wave travel time inversion,surface wave inversion from far-field earthquakes and ambient noise.Each of the above method has its own advantages and limitations.Thus,one or more of the above methods are often combined to characterize multi-layered anisotropy,of which the depth range of anisotropic layers are different.This paper reviews the research progress of multi-layered anisotropy for the purpose of providing a basis for future seismic anisotropy investigations.
文摘In this paper an approach to estimate near-surface seismodynamic features by using distance- amplitude reduction with geotectonic characteristics of the upper crust in the Eastern Anatolia is discussed. The data set used in this study consists of 287 regional earthquakes in the magnitude range of 3.0 - 6.1, epicentral distances between 15 km and 202 km and their focal depths reaching up to 13 km. The entire study area is divided into three tectonic blocks according to the distribu-tions of the earthquakes and the location of the fault segment. The estimated quality factor QP-S??values for the three regions ranged from 28.6 to 65, highlighting the regional differences in the seismodynamics of the crust. In Eastern Anatolia, the relatively low average quality factor values (QP: 37, QS: 55) show average (0.217) and average values ( P: 0.0166,?S: 0.017). The lowest QS?/QP? value 1.39 and the highest VP?/VS? value 1.65 are found at the Mus station. The highest Poisson’s ratio? ?and lowest absorption coefficient? ?were found in the Mus area. The variation in Q?,? ?and? indicates that the northern part (Erc and Kem region) of East Anatolia appears to be more active and heterogeneous compared with the southern part (Mus region) of East Anatolia.