Finite-difference(FD) methods are widely used in seismic forward modeling owing to their computational efficiency but are not readily applicable to irregular topographies. Thus, several FD methods based on the transfo...Finite-difference(FD) methods are widely used in seismic forward modeling owing to their computational efficiency but are not readily applicable to irregular topographies. Thus, several FD methods based on the transformation to curvilinear coordinates using body-fitted grids have been proposed, e.g., stand staggered grid(SSG) with interpolation, nonstaggered grid, rotated staggered grid(RSG), and fully staggered. The FD based on the RSG is somewhat superior to others because it satisfies the spatial distribution of the wave equation without additional memory and computational requirements; furthermore, it is simpler to implement. We use the RSG FD method to transform the firstorder stress–velocity equation in the curvilinear coordinates system and introduce the highprecision adaptive, unilateral mimetic finite-difference(UMFD) method to process the freeboundary conditions of an irregular surface. The numerical results suggest that the precision of the solution is higher than that of the vacuum formalism. When the minimum wavelength is low, UMFD avoids the surface wave dispersion. We compare FD methods based on RSG, SEM, and nonstaggered grid and infer that all simulation results are consistent but the computational efficiency of the RSG FD method is higher than the rest.展开更多
The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Th...The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Therefore,this paper assesses the performance of a 51 kW PV solar power plant connected to a low-voltage grid to feed an administrative building in the 6th of October City,Egypt.The performance analysis of the considered grid-connected PV system is carried out using power system simulator for Engineering(PSS/E)software.Where the PSS/E program,monitors and uses the power analyzer that displays the parameters and measures some parameters such as current,voltage,total power,power factor,frequency,and current and voltage harmonics,the used inverter from the type of grid inverter for the considered system.The results conclude that when the maximum solar radiation is reached,the maximum current can be obtained from the solar panels,thus obtaining the maximum power and power factor.Decreasing total voltage harmonic distortion,a current harmonic distortion within permissible limits using active harmonic distortion because this type is fast in processing up to 300 microseconds.The connection between solar stations and the national grid makes the system more efficient.展开更多
A type of mesh called a body-fi tted Cartesian mesh,very different from the traditional structured body-fi tted mesh,is established.At f irst,the right parallelepiped mesh is generated,then,a feature analysis is done ...A type of mesh called a body-fi tted Cartesian mesh,very different from the traditional structured body-fi tted mesh,is established.At f irst,the right parallelepiped mesh is generated,then,a feature analysis is done on the cross sections.These cross sections are the intersections of the casting shape with the right parallelepiped grids(under the Cartesian coordinate system).On the basis of the feature analysis,two sorts of body-f itted boundary grids,shape-keeping grids and shape-distortion grids,are def ined.Shape-distortion grids can be removed or weaken by increasing the number of grids or moving the coordinates of the mesh generation region,so actually the body-fitted Cartesian mesh generation is to get shape-keeping grids.A shape-keeping grid mainly consists of two sorts of surfaces(I type face and II type face),and each of them is joined by two types of points(I type point and II type point).If only these two types of points were given,the shape-keeping mesh would be constructed.In this paper,the cases of the above two boundary grids being generated were discussed.An algorithm was put forward to get the shape-keeping grids.Several body-fi tted Cartesian meshes generated on castings show the validity of the algorithm.The mesh generation examples show that the body-fi tted Cartesian mesh is more excellent than the right parallelepiped mesh in aspects of decreasing grids number and being closer to the shape of the casting solid.展开更多
This article presents information on the study of the flora of Uzbekistan based on grid system mapping. The urban flora of the city of Bukhara was researched in it. As a result of research, the territory of Bukhara ci...This article presents information on the study of the flora of Uzbekistan based on grid system mapping. The urban flora of the city of Bukhara was researched in it. As a result of research, the territory of Bukhara city was divided into 85 indexes based on 1 × 1 km<sup>2</sup> grid mapping system. The diversity and density of species in the indexes are determined. The influence of anthropogenic factors on the diversity of species in the indexes is determined.展开更多
Electricity theft is a widespread non-technical issue that has a negative impact on both power grids and electricity users.It hinders the economic growth of utility companies,poses electrical risks,and impacts the hig...Electricity theft is a widespread non-technical issue that has a negative impact on both power grids and electricity users.It hinders the economic growth of utility companies,poses electrical risks,and impacts the high energy costs borne by consumers.The development of smart grids is crucial for the identification of power theft since these systems create enormous amounts of data,including information on client consumption,which may be used to identify electricity theft using machine learning and deep learning techniques.Moreover,there also exist different solutions such as hardware-based solutions to detect electricity theft that may require human resources and expensive hardware.Computer-based solutions are presented in the literature to identify electricity theft but due to the dimensionality curse,class imbalance issue and improper hyper-parameter tuning of such models lead to poor performance.In this research,a hybrid deep learning model abbreviated as RoGRUT is proposed to detect electricity theft as amalicious and non-malicious activity.The key steps of the RoGRUT are data preprocessing that covers the problem of class imbalance,feature extraction and final theft detection.Different advanced-level models like RoBERTa is used to address the curse of dimensionality issue,the near miss for class imbalance,and transfer learning for classification.The effectiveness of the RoGRUTis evaluated using the dataset fromactual smartmeters.A significant number of simulations demonstrate that,when compared to its competitors,the RoGRUT achieves the best classification results.The performance evaluation of the proposed model revealed exemplary results across variousmetrics.The accuracy achieved was 88%,with precision at an impressive 86%and recall reaching 84%.The F1-Score,a measure of overall performance,stood at 85%.Furthermore,themodel exhibited a noteworthyMatthew correlation coefficient of 78%and excelled with an area under the curve of 91%.展开更多
If an explicit time scheme is used in a numerical model, the size of the integration time step is typically limited by the spatial resolution. This study develops a regular latitude–longitude grid-based global three-...If an explicit time scheme is used in a numerical model, the size of the integration time step is typically limited by the spatial resolution. This study develops a regular latitude–longitude grid-based global three-dimensional tracer transport model that is computationally stable at large time-step sizes. The tracer model employs a finite-volume flux-form semiLagrangian transport scheme in the horizontal and an adaptively implicit algorithm in the vertical. The horizontal and vertical solvers are coupled via a straightforward operator-splitting technique. Both the finite-volume scheme's onedimensional slope-limiter and the adaptively implicit vertical solver's first-order upwind scheme enforce monotonicity. The tracer model permits a large time-step size and is inherently conservative and monotonic. Idealized advection test cases demonstrate that the three-dimensional transport model performs very well in terms of accuracy, stability, and efficiency. It is possible to use this robust transport model in a global atmospheric dynamical core.展开更多
With the widespread use of machine learning(ML)technology,the operational efficiency and responsiveness of power grids have been significantly enhanced,allowing smart grids to achieve high levels of automation and int...With the widespread use of machine learning(ML)technology,the operational efficiency and responsiveness of power grids have been significantly enhanced,allowing smart grids to achieve high levels of automation and intelligence.However,tree ensemble models commonly used in smart grids are vulnerable to adversarial attacks,making it urgent to enhance their robustness.To address this,we propose a robustness enhancement method that incorporates physical constraints into the node-splitting decisions of tree ensembles.Our algorithm improves robustness by developing a dataset of adversarial examples that comply with physical laws,ensuring training data accurately reflects possible attack scenarios while adhering to physical rules.In our experiments,the proposed method increased robustness against adversarial attacks by 100%when applied to real grid data under physical constraints.These results highlight the advantages of our method in maintaining efficient and secure operation of smart grids under adversarial conditions.展开更多
Global gridded crop models(GGCMs) have been broadly applied to assess the impacts of climate and environmental change and adaptation on agricultural production. China is a major grain producing country, but thus far o...Global gridded crop models(GGCMs) have been broadly applied to assess the impacts of climate and environmental change and adaptation on agricultural production. China is a major grain producing country, but thus far only a few studies have assessed the performance of GGCMs in China, and these studies mainly focused on the average and interannual variability of national and regional yields. Here, a systematic national-and provincial-scale evaluation of the simulations by13 GGCMs [12 from the GGCM Intercomparison(GGCMI) project, phase 1, and CLM5-crop] of the yields of four crops(wheat, maize, rice, and soybean) in China during 1980–2009 was carried out through comparison with crop yield statistics collected from the National Bureau of Statistics of China. Results showed that GGCMI models generally underestimate the national yield of rice but overestimate it for the other three crops, while CLM5-crop can reproduce the national yields of wheat, maize, and rice well. Most GGCMs struggle to simulate the spatial patterns of crop yields. In terms of temporal variability, GGCMI models generally fail to capture the observed significant increases, but some can skillfully simulate the interannual variability. Conversely, CLM5-crop can represent the increases in wheat, maize, and rice, but works less well in simulating the interannual variability. At least one model can skillfully reproduce the temporal variability of yields in the top-10 producing provinces in China, albeit with a few exceptions. This study, for the first time, provides a complete picture of GGCM performance in China, which is important for GGCM development and understanding the reliability and uncertainty of national-and provincial-scale crop yield prediction in China.展开更多
Acoustic emission(AE)source localization is a fundamental element of rock fracture damage imaging.To improve the efficiency and accuracy of AE source localization,this paper proposes a joint method comprising a three-...Acoustic emission(AE)source localization is a fundamental element of rock fracture damage imaging.To improve the efficiency and accuracy of AE source localization,this paper proposes a joint method comprising a three-dimensional(3D)AE source localization simplex method and grid search scanning.Using the concept of the geometry of simplexes,tetrahedral iterations were first conducted to narrow down the suspected source region.This is followed by a process of meshing the region and node searching to scan for optimal solutions,until the source location is determined.The resulting algorithm was tested using the artificial excitation source localization and uniaxial compression tests,after which the localization results were compared with the simplex and exhaustive methods.The results revealed that the localization obtained using the proposed method is more stable and can be effectively avoided compared with the simplex localization method.Furthermore,compared with the global scanning method,the proposed method is more efficient,with an average time of 10%–20%of the global scanning localization algorithm.Thus,the proposed algorithm is of great significance for laboratory research focused on locating rupture damages sustained by large-sized rock masses or test blocks.展开更多
False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work u...False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams.Data-driven features,however,cannot effectively capture the differences between noisy data and attack samples.As a result,slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks.To address this problem,this paper designs a deep collaborative self-attention network to achieve robust FDIA detection,in which the spatio-temporal features of cascaded FDIA attacks are fully integrated.Firstly,a high-order Chebyshev polynomials-based graph convolution module is designed to effectively aggregate the spatio information between grid nodes,and the spatial self-attention mechanism is involved to dynamically assign attention weights to each node,which guides the network to pay more attention to the node information that is conducive to FDIA detection.Furthermore,the bi-directional Long Short-Term Memory(LSTM)network is introduced to conduct time series modeling and long-term dependence analysis for power grid data and utilizes the temporal selfattention mechanism to describe the time correlation of data and assign different weights to different time steps.Our designed deep collaborative network can effectively mine subtle perturbations from spatiotemporal feature information,efficiently distinguish power grid noise from FDIA attacks,and adapt to diverse attack intensities.Extensive experiments demonstrate that our method can obtain an efficient detection performance over actual load data from New York Independent System Operator(NYISO)in IEEE 14,IEEE 39,and IEEE 118 bus systems,and outperforms state-of-the-art FDIA detection schemes in terms of detection accuracy and robustness.展开更多
The power grid is undergoing a transformation from synchronous generators(SGs) toward inverter-based resources(IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challeng...The power grid is undergoing a transformation from synchronous generators(SGs) toward inverter-based resources(IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challenges to grid resilience. Virtual power plants(VPPs) are emerging technologies to improve the grid resilience and advance the transformation. By judiciously aggregating geographically distributed energy resources(DERs) as individual electrical entities, VPPs can provide capacity and ancillary services to grid operations and participate in electricity wholesale markets. This paper aims to provide a concise overview of the concept and development of VPPs and the latest progresses in VPP operation, with the focus on VPP scheduling and control. Based on this overview, we identify a few potential challenges in VPP operation and discuss the opportunities of integrating the multi-agent system(MAS)-based strategy into the VPP operation to enhance its scalability, performance and resilience.展开更多
Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical a...Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical attacks,such as dynamic load-altering attacks(DLAAs)has introduced great challenges to the security of smart energy grids.Thus,this study developed a novel cyber-physical collaborative security framework for DLAAs in smart energy grids.The proposed framework integrates attack prediction in the cyber layer with the detection and localization of attacks in the physical layer.First,a data-driven method was proposed to predict the DLAA sequence in the cyber layer.By designing a double radial basis function network,the influence of disturbances on attack prediction can be eliminated.Based on the prediction results,an unknown input observer-based detection and localization method was further developed for the physical layer.In addition,an adaptive threshold was designed to replace the traditional precomputed threshold and improve the detection performance of the DLAAs.Consequently,through the collaborative work of the cyber-physics layer,injected DLAAs were effectively detected and located.Compared with existing methodologies,the simulation results on IEEE 14-bus and 118-bus power systems verified the superiority of the proposed cyber-physical collaborative detection and localization against DLAAs.展开更多
When a line failure occurs in a power grid, a load transfer is implemented to reconfigure the network by changingthe states of tie-switches and load demands. Computation speed is one of the major performance indicator...When a line failure occurs in a power grid, a load transfer is implemented to reconfigure the network by changingthe states of tie-switches and load demands. Computation speed is one of the major performance indicators inpower grid load transfer, as a fast load transfer model can greatly reduce the economic loss of post-fault powergrids. In this study, a reinforcement learning method is developed based on a deep deterministic policy gradient.The tedious training process of the reinforcement learning model can be conducted offline, so the model showssatisfactory performance in real-time operation, indicating that it is suitable for fast load transfer. Consideringthat the reinforcement learning model performs poorly in satisfying safety constraints, a safe action-correctionframework is proposed to modify the learning model. In the framework, the action of load shedding is correctedaccording to sensitivity analysis results under a small discrete increment so as to match the constraints of line flowlimits. The results of case studies indicate that the proposed method is practical for fast and safe power grid loadtransfer.展开更多
In the evolving landscape of the smart grid(SG),the integration of non-organic multiple access(NOMA)technology has emerged as a pivotal strategy for enhancing spectral efficiency and energy management.However,the open...In the evolving landscape of the smart grid(SG),the integration of non-organic multiple access(NOMA)technology has emerged as a pivotal strategy for enhancing spectral efficiency and energy management.However,the open nature of wireless channels in SG raises significant concerns regarding the confidentiality of critical control messages,especially when broadcasted from a neighborhood gateway(NG)to smart meters(SMs).This paper introduces a novel approach based on reinforcement learning(RL)to fortify the performance of secrecy.Motivated by the need for efficient and effective training of the fully connected layers in the RL network,we employ an improved chimp optimization algorithm(IChOA)to update the parameters of the RL.By integrating the IChOA into the training process,the RL agent is expected to learn more robust policies faster and with better convergence properties compared to standard optimization algorithms.This can lead to improved performance in complex SG environments,where the agent must make decisions that enhance the security and efficiency of the network.We compared the performance of our proposed method(IChOA-RL)with several state-of-the-art machine learning(ML)algorithms,including recurrent neural network(RNN),long short-term memory(LSTM),K-nearest neighbors(KNN),support vector machine(SVM),improved crow search algorithm(I-CSA),and grey wolf optimizer(GWO).Extensive simulations demonstrate the efficacy of our approach compared to the related works,showcasing significant improvements in secrecy capacity rates under various network conditions.The proposed IChOA-RL exhibits superior performance compared to other algorithms in various aspects,including the scalability of the NOMA communication system,accuracy,coefficient of determination(R2),root mean square error(RMSE),and convergence trend.For our dataset,the IChOA-RL architecture achieved coefficient of determination of 95.77%and accuracy of 97.41%in validation dataset.This was accompanied by the lowest RMSE(0.95),indicating very precise predictions with minimal error.展开更多
Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or d...Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or discontinuous CNER.However,a unified CNER is often needed in real-world scenarios.Recent studies have shown that grid tagging-based methods based on character-pair relationship classification hold great potential for achieving unified NER.Nevertheless,how to enrich Chinese character-pair grid representations and capture deeper dependencies between character pairs to improve entity recognition performance remains an unresolved challenge.In this study,we enhance the character-pair grid representation by incorporating both local and global information.Significantly,we introduce a new approach by considering the character-pair grid representation matrix as a specialized image,converting the classification of character-pair relationships into a pixel-level semantic segmentation task.We devise a U-shaped network to extract multi-scale and deeper semantic information from the grid image,allowing for a more comprehensive understanding of associative features between character pairs.This approach leads to improved accuracy in predicting their relationships,ultimately enhancing entity recognition performance.We conducted experiments on two public CNER datasets in the biomedical domain,namely CMeEE-V2 and Diakg.The results demonstrate the effectiveness of our approach,which achieves F1-score improvements of 7.29 percentage points and 1.64 percentage points compared to the current state-of-the-art(SOTA)models,respectively.展开更多
Spatial variation is often encountered when large scale field trials are conducted which can result in biased estimation or prediction of treatment (i.e. genotype) values. An effective removal of spatial variation is ...Spatial variation is often encountered when large scale field trials are conducted which can result in biased estimation or prediction of treatment (i.e. genotype) values. An effective removal of spatial variation is needed to ensure unbiased estimation or prediction and thus increase the accuracy of field data evaluation. A moving grid adjustment (MGA) method, which was proposed by Technow, was evaluated through Monte Carlo simulation for its statistical properties regarding field spatial variation control. Our simulation results showed that the MGA method can effectively account for field spatial variation if it does exist;however, this method will not change phenotype results if field spatial variation does not exist. The MGA method was applied to a large-scale cotton field trial data set with two representative agronomic traits: lint yield (strong field spatial pattern) and lint percentage (no field spatial pattern). The results suggested that the MGA method was able to effectively separate the spatial variation including blocking effects from random error variation for lint yield while the adjusted data remained almost identical to the original phenotypic data. With application of the MGA method, the estimated variance for residuals was significantly reduced (62.2% decrease) for lint yield while more genetic variation (29.7% increase) was detected compared to the original data analysis subject to the conventional randomized complete block design analysis. On the other hand, the results were almost identical for lint percentage with and without the application of the MGA method. Therefore, the MGA method can be a useful addition to enhance data analysis when field spatial pattern exists.展开更多
Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean...Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales.展开更多
Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightene...Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightened security challenges within smart grids,IEDs pose significant risks due to inherent hardware and software vulner-abilities,as well as the openness and vulnerability of communication protocols.Smart grid security,distinct from traditional internet security,mainly relies on monitoring network security events at the platform layer,lacking an effective assessment mechanism for IEDs.Hence,we incorporate considerations for both cyber-attacks and physical faults,presenting security assessment indicators and methods specifically tailored for IEDs.Initially,we outline the security monitoring technology for IEDs,considering the necessary data sources for their security assessment.Subsequently,we classify IEDs and establish a comprehensive security monitoring index system,incorporating factors such as running states,network traffic,and abnormal behaviors.This index system contains 18 indicators in 3 categories.Additionally,we elucidate quantitative methods for various indicators and propose a hybrid security assessment method known as GRCW-hybrid,combining grey relational analysis(GRA),analytic hierarchy process(AHP),and entropy weight method(EWM).According to the proposed assessment method,the security risk level of IEDs can be graded into 6 levels,namely 0,1,2,3,4,and 5.The higher the level,the greater the security risk.Finally,we assess and simulate 15 scenarios in 3 categories,which are based on monitoring indicators and real-world situations encountered by IEDs.The results show that calculated security risk level based on the proposed assessment method are consistent with actual simulation.Thus,the reasonableness and effectiveness of the proposed index system and assessment method are validated.展开更多
This article proposes a dual-negative-objective coordinated control strategy for brushless doubly fed induction generator(BDFIG)based wind power generation system under unbalanced grid voltage.To alleviate the mechani...This article proposes a dual-negative-objective coordinated control strategy for brushless doubly fed induction generator(BDFIG)based wind power generation system under unbalanced grid voltage.To alleviate the mechanical stress and impaction on rotating shaft,the negative control objective(NCO)of machine side converter(MSC)is set to suppress the ripple of electromagnetic torque.While the NCO of grid side converter(GSC)is selected to suppress the oscillation of total output active power or the unbalanced degree of total output current for BDFIG generation system.In comparison with traditional single converter control scheme of the MSC or GSC,dual NCOs can be satisfied at the same time due to the enlarged freedom degree in the proposed improved coordinated control system for back-toback converters.The effectiveness of proposed control strategy is validated by simulation and experimental results on a dual-cagerotor BDFIG(DCR-BDFIG)prototype.展开更多
This paper reviews the adaptive sparse grid discontinuous Galerkin(aSG-DG)method for computing high dimensional partial differential equations(PDEs)and its software implementation.The C++software package called AdaM-D...This paper reviews the adaptive sparse grid discontinuous Galerkin(aSG-DG)method for computing high dimensional partial differential equations(PDEs)and its software implementation.The C++software package called AdaM-DG,implementing the aSG-DG method,is available on GitHub at https://github.com/JuntaoHuang/adaptive-multiresolution-DG.The package is capable of treating a large class of high dimensional linear and nonlinear PDEs.We review the essential components of the algorithm and the functionality of the software,including the multiwavelets used,assembling of bilinear operators,fast matrix-vector product for data with hierarchical structures.We further demonstrate the performance of the package by reporting the numerical error and the CPU cost for several benchmark tests,including linear transport equations,wave equations,and Hamilton-Jacobi(HJ)equations.展开更多
基金supported by the National Nature Science Foundation of China(Nos.41504102 and 41604037)National Science and Technology Major Project(No.2016ZX05015-006)Yangtze University Youth Found(No.2015cqn32)
文摘Finite-difference(FD) methods are widely used in seismic forward modeling owing to their computational efficiency but are not readily applicable to irregular topographies. Thus, several FD methods based on the transformation to curvilinear coordinates using body-fitted grids have been proposed, e.g., stand staggered grid(SSG) with interpolation, nonstaggered grid, rotated staggered grid(RSG), and fully staggered. The FD based on the RSG is somewhat superior to others because it satisfies the spatial distribution of the wave equation without additional memory and computational requirements; furthermore, it is simpler to implement. We use the RSG FD method to transform the firstorder stress–velocity equation in the curvilinear coordinates system and introduce the highprecision adaptive, unilateral mimetic finite-difference(UMFD) method to process the freeboundary conditions of an irregular surface. The numerical results suggest that the precision of the solution is higher than that of the vacuum formalism. When the minimum wavelength is low, UMFD avoids the surface wave dispersion. We compare FD methods based on RSG, SEM, and nonstaggered grid and infer that all simulation results are consistent but the computational efficiency of the RSG FD method is higher than the rest.
文摘The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Therefore,this paper assesses the performance of a 51 kW PV solar power plant connected to a low-voltage grid to feed an administrative building in the 6th of October City,Egypt.The performance analysis of the considered grid-connected PV system is carried out using power system simulator for Engineering(PSS/E)software.Where the PSS/E program,monitors and uses the power analyzer that displays the parameters and measures some parameters such as current,voltage,total power,power factor,frequency,and current and voltage harmonics,the used inverter from the type of grid inverter for the considered system.The results conclude that when the maximum solar radiation is reached,the maximum current can be obtained from the solar panels,thus obtaining the maximum power and power factor.Decreasing total voltage harmonic distortion,a current harmonic distortion within permissible limits using active harmonic distortion because this type is fast in processing up to 300 microseconds.The connection between solar stations and the national grid makes the system more efficient.
基金financially supported by the fund of the State Key Laboratory of Solidif ication Processing in NWPU(No:SKLSP201006)the fund of the National Basic Research Program of China(No:2011CB610402)
文摘A type of mesh called a body-fi tted Cartesian mesh,very different from the traditional structured body-fi tted mesh,is established.At f irst,the right parallelepiped mesh is generated,then,a feature analysis is done on the cross sections.These cross sections are the intersections of the casting shape with the right parallelepiped grids(under the Cartesian coordinate system).On the basis of the feature analysis,two sorts of body-f itted boundary grids,shape-keeping grids and shape-distortion grids,are def ined.Shape-distortion grids can be removed or weaken by increasing the number of grids or moving the coordinates of the mesh generation region,so actually the body-fitted Cartesian mesh generation is to get shape-keeping grids.A shape-keeping grid mainly consists of two sorts of surfaces(I type face and II type face),and each of them is joined by two types of points(I type point and II type point).If only these two types of points were given,the shape-keeping mesh would be constructed.In this paper,the cases of the above two boundary grids being generated were discussed.An algorithm was put forward to get the shape-keeping grids.Several body-fi tted Cartesian meshes generated on castings show the validity of the algorithm.The mesh generation examples show that the body-fi tted Cartesian mesh is more excellent than the right parallelepiped mesh in aspects of decreasing grids number and being closer to the shape of the casting solid.
文摘This article presents information on the study of the flora of Uzbekistan based on grid system mapping. The urban flora of the city of Bukhara was researched in it. As a result of research, the territory of Bukhara city was divided into 85 indexes based on 1 × 1 km<sup>2</sup> grid mapping system. The diversity and density of species in the indexes are determined. The influence of anthropogenic factors on the diversity of species in the indexes is determined.
基金a grant from the Center of Excellence in Information Assurance(CoEIA),KSU.
文摘Electricity theft is a widespread non-technical issue that has a negative impact on both power grids and electricity users.It hinders the economic growth of utility companies,poses electrical risks,and impacts the high energy costs borne by consumers.The development of smart grids is crucial for the identification of power theft since these systems create enormous amounts of data,including information on client consumption,which may be used to identify electricity theft using machine learning and deep learning techniques.Moreover,there also exist different solutions such as hardware-based solutions to detect electricity theft that may require human resources and expensive hardware.Computer-based solutions are presented in the literature to identify electricity theft but due to the dimensionality curse,class imbalance issue and improper hyper-parameter tuning of such models lead to poor performance.In this research,a hybrid deep learning model abbreviated as RoGRUT is proposed to detect electricity theft as amalicious and non-malicious activity.The key steps of the RoGRUT are data preprocessing that covers the problem of class imbalance,feature extraction and final theft detection.Different advanced-level models like RoBERTa is used to address the curse of dimensionality issue,the near miss for class imbalance,and transfer learning for classification.The effectiveness of the RoGRUTis evaluated using the dataset fromactual smartmeters.A significant number of simulations demonstrate that,when compared to its competitors,the RoGRUT achieves the best classification results.The performance evaluation of the proposed model revealed exemplary results across variousmetrics.The accuracy achieved was 88%,with precision at an impressive 86%and recall reaching 84%.The F1-Score,a measure of overall performance,stood at 85%.Furthermore,themodel exhibited a noteworthyMatthew correlation coefficient of 78%and excelled with an area under the curve of 91%.
基金jointly supported by the National Natural Science Foundation of China (Grant No.42075153)the Young Scientists Fund of the Earth System Modeling and Prediction Centre (Grant No. CEMC-QNJJ-2022014)。
文摘If an explicit time scheme is used in a numerical model, the size of the integration time step is typically limited by the spatial resolution. This study develops a regular latitude–longitude grid-based global three-dimensional tracer transport model that is computationally stable at large time-step sizes. The tracer model employs a finite-volume flux-form semiLagrangian transport scheme in the horizontal and an adaptively implicit algorithm in the vertical. The horizontal and vertical solvers are coupled via a straightforward operator-splitting technique. Both the finite-volume scheme's onedimensional slope-limiter and the adaptively implicit vertical solver's first-order upwind scheme enforce monotonicity. The tracer model permits a large time-step size and is inherently conservative and monotonic. Idealized advection test cases demonstrate that the three-dimensional transport model performs very well in terms of accuracy, stability, and efficiency. It is possible to use this robust transport model in a global atmospheric dynamical core.
基金This work was supported by Natural Science Foundation of China(Nos.62303126,62362008,62066006,authors Zhenyong Zhang and Bin Hu,https://www.nsfc.gov.cn/,accessed on 25 July 2024)Guizhou Provincial Science and Technology Projects(No.ZK[2022]149,author Zhenyong Zhang,https://kjt.guizhou.gov.cn/,accessed on 25 July 2024)+1 种基金Guizhou Provincial Research Project(Youth)forUniversities(No.[2022]104,author Zhenyong Zhang,https://jyt.guizhou.gov.cn/,accessed on 25 July 2024)GZU Cultivation Project of NSFC(No.[2020]80,author Zhenyong Zhang,https://www.gzu.edu.cn/,accessed on 25 July 2024).
文摘With the widespread use of machine learning(ML)technology,the operational efficiency and responsiveness of power grids have been significantly enhanced,allowing smart grids to achieve high levels of automation and intelligence.However,tree ensemble models commonly used in smart grids are vulnerable to adversarial attacks,making it urgent to enhance their robustness.To address this,we propose a robustness enhancement method that incorporates physical constraints into the node-splitting decisions of tree ensembles.Our algorithm improves robustness by developing a dataset of adversarial examples that comply with physical laws,ensuring training data accurately reflects possible attack scenarios while adhering to physical rules.In our experiments,the proposed method increased robustness against adversarial attacks by 100%when applied to real grid data under physical constraints.These results highlight the advantages of our method in maintaining efficient and secure operation of smart grids under adversarial conditions.
基金co-supported by the Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2021B0301030007)the National Key Research and Development Program of China (Grant Nos. 2017YFA0604302 and 2017YFA0604804)+1 种基金the National Natural Science Foundation of China (Grant No. 41875137)the National Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (Earth Lab)。
文摘Global gridded crop models(GGCMs) have been broadly applied to assess the impacts of climate and environmental change and adaptation on agricultural production. China is a major grain producing country, but thus far only a few studies have assessed the performance of GGCMs in China, and these studies mainly focused on the average and interannual variability of national and regional yields. Here, a systematic national-and provincial-scale evaluation of the simulations by13 GGCMs [12 from the GGCM Intercomparison(GGCMI) project, phase 1, and CLM5-crop] of the yields of four crops(wheat, maize, rice, and soybean) in China during 1980–2009 was carried out through comparison with crop yield statistics collected from the National Bureau of Statistics of China. Results showed that GGCMI models generally underestimate the national yield of rice but overestimate it for the other three crops, while CLM5-crop can reproduce the national yields of wheat, maize, and rice well. Most GGCMs struggle to simulate the spatial patterns of crop yields. In terms of temporal variability, GGCMI models generally fail to capture the observed significant increases, but some can skillfully simulate the interannual variability. Conversely, CLM5-crop can represent the increases in wheat, maize, and rice, but works less well in simulating the interannual variability. At least one model can skillfully reproduce the temporal variability of yields in the top-10 producing provinces in China, albeit with a few exceptions. This study, for the first time, provides a complete picture of GGCM performance in China, which is important for GGCM development and understanding the reliability and uncertainty of national-and provincial-scale crop yield prediction in China.
基金supported by the Natural Science Foundation of Henan Province(No.222300420596)China Railway Science and Technology Innovation Program Funded Project(CZ02-Special-03)Science and Technology Innovation Project funded by China Railway Tunnel Group(Tunnel Research 2021-03)。
文摘Acoustic emission(AE)source localization is a fundamental element of rock fracture damage imaging.To improve the efficiency and accuracy of AE source localization,this paper proposes a joint method comprising a three-dimensional(3D)AE source localization simplex method and grid search scanning.Using the concept of the geometry of simplexes,tetrahedral iterations were first conducted to narrow down the suspected source region.This is followed by a process of meshing the region and node searching to scan for optimal solutions,until the source location is determined.The resulting algorithm was tested using the artificial excitation source localization and uniaxial compression tests,after which the localization results were compared with the simplex and exhaustive methods.The results revealed that the localization obtained using the proposed method is more stable and can be effectively avoided compared with the simplex localization method.Furthermore,compared with the global scanning method,the proposed method is more efficient,with an average time of 10%–20%of the global scanning localization algorithm.Thus,the proposed algorithm is of great significance for laboratory research focused on locating rupture damages sustained by large-sized rock masses or test blocks.
基金supported in part by the Research Fund of Guangxi Key Lab of Multi-Source Information Mining&Security(MIMS21-M-02).
文摘False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams.Data-driven features,however,cannot effectively capture the differences between noisy data and attack samples.As a result,slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks.To address this problem,this paper designs a deep collaborative self-attention network to achieve robust FDIA detection,in which the spatio-temporal features of cascaded FDIA attacks are fully integrated.Firstly,a high-order Chebyshev polynomials-based graph convolution module is designed to effectively aggregate the spatio information between grid nodes,and the spatial self-attention mechanism is involved to dynamically assign attention weights to each node,which guides the network to pay more attention to the node information that is conducive to FDIA detection.Furthermore,the bi-directional Long Short-Term Memory(LSTM)network is introduced to conduct time series modeling and long-term dependence analysis for power grid data and utilizes the temporal selfattention mechanism to describe the time correlation of data and assign different weights to different time steps.Our designed deep collaborative network can effectively mine subtle perturbations from spatiotemporal feature information,efficiently distinguish power grid noise from FDIA attacks,and adapt to diverse attack intensities.Extensive experiments demonstrate that our method can obtain an efficient detection performance over actual load data from New York Independent System Operator(NYISO)in IEEE 14,IEEE 39,and IEEE 118 bus systems,and outperforms state-of-the-art FDIA detection schemes in terms of detection accuracy and robustness.
基金Department of Navy Awards N00014-22-1-2001 and N00014-23-1-2124 issued by the Office of Naval Research。
文摘The power grid is undergoing a transformation from synchronous generators(SGs) toward inverter-based resources(IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challenges to grid resilience. Virtual power plants(VPPs) are emerging technologies to improve the grid resilience and advance the transformation. By judiciously aggregating geographically distributed energy resources(DERs) as individual electrical entities, VPPs can provide capacity and ancillary services to grid operations and participate in electricity wholesale markets. This paper aims to provide a concise overview of the concept and development of VPPs and the latest progresses in VPP operation, with the focus on VPP scheduling and control. Based on this overview, we identify a few potential challenges in VPP operation and discuss the opportunities of integrating the multi-agent system(MAS)-based strategy into the VPP operation to enhance its scalability, performance and resilience.
基金supported by the National Nature Science Foundation of China under 62203376the Science and Technology Plan of Hebei Education Department under QN2021139+1 种基金the Nature Science Foundation of Hebei Province under F2021203043the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology under No.XTCX202203.
文摘Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical attacks,such as dynamic load-altering attacks(DLAAs)has introduced great challenges to the security of smart energy grids.Thus,this study developed a novel cyber-physical collaborative security framework for DLAAs in smart energy grids.The proposed framework integrates attack prediction in the cyber layer with the detection and localization of attacks in the physical layer.First,a data-driven method was proposed to predict the DLAA sequence in the cyber layer.By designing a double radial basis function network,the influence of disturbances on attack prediction can be eliminated.Based on the prediction results,an unknown input observer-based detection and localization method was further developed for the physical layer.In addition,an adaptive threshold was designed to replace the traditional precomputed threshold and improve the detection performance of the DLAAs.Consequently,through the collaborative work of the cyber-physics layer,injected DLAAs were effectively detected and located.Compared with existing methodologies,the simulation results on IEEE 14-bus and 118-bus power systems verified the superiority of the proposed cyber-physical collaborative detection and localization against DLAAs.
基金the Incubation Project of State Grid Jiangsu Corporation of China“Construction and Application of Intelligent Load Transferring Platform for Active Distribution Networks”(JF2023031).
文摘When a line failure occurs in a power grid, a load transfer is implemented to reconfigure the network by changingthe states of tie-switches and load demands. Computation speed is one of the major performance indicators inpower grid load transfer, as a fast load transfer model can greatly reduce the economic loss of post-fault powergrids. In this study, a reinforcement learning method is developed based on a deep deterministic policy gradient.The tedious training process of the reinforcement learning model can be conducted offline, so the model showssatisfactory performance in real-time operation, indicating that it is suitable for fast load transfer. Consideringthat the reinforcement learning model performs poorly in satisfying safety constraints, a safe action-correctionframework is proposed to modify the learning model. In the framework, the action of load shedding is correctedaccording to sensitivity analysis results under a small discrete increment so as to match the constraints of line flowlimits. The results of case studies indicate that the proposed method is practical for fast and safe power grid loadtransfer.
文摘In the evolving landscape of the smart grid(SG),the integration of non-organic multiple access(NOMA)technology has emerged as a pivotal strategy for enhancing spectral efficiency and energy management.However,the open nature of wireless channels in SG raises significant concerns regarding the confidentiality of critical control messages,especially when broadcasted from a neighborhood gateway(NG)to smart meters(SMs).This paper introduces a novel approach based on reinforcement learning(RL)to fortify the performance of secrecy.Motivated by the need for efficient and effective training of the fully connected layers in the RL network,we employ an improved chimp optimization algorithm(IChOA)to update the parameters of the RL.By integrating the IChOA into the training process,the RL agent is expected to learn more robust policies faster and with better convergence properties compared to standard optimization algorithms.This can lead to improved performance in complex SG environments,where the agent must make decisions that enhance the security and efficiency of the network.We compared the performance of our proposed method(IChOA-RL)with several state-of-the-art machine learning(ML)algorithms,including recurrent neural network(RNN),long short-term memory(LSTM),K-nearest neighbors(KNN),support vector machine(SVM),improved crow search algorithm(I-CSA),and grey wolf optimizer(GWO).Extensive simulations demonstrate the efficacy of our approach compared to the related works,showcasing significant improvements in secrecy capacity rates under various network conditions.The proposed IChOA-RL exhibits superior performance compared to other algorithms in various aspects,including the scalability of the NOMA communication system,accuracy,coefficient of determination(R2),root mean square error(RMSE),and convergence trend.For our dataset,the IChOA-RL architecture achieved coefficient of determination of 95.77%and accuracy of 97.41%in validation dataset.This was accompanied by the lowest RMSE(0.95),indicating very precise predictions with minimal error.
基金supported by Yunnan Provincial Major Science and Technology Special Plan Projects(Grant Nos.202202AD080003,202202AE090008,202202AD080004,202302AD080003)National Natural Science Foundation of China(Grant Nos.U21B2027,62266027,62266028,62266025)Yunnan Province Young and Middle-Aged Academic and Technical Leaders Reserve Talent Program(Grant No.202305AC160063).
文摘Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or discontinuous CNER.However,a unified CNER is often needed in real-world scenarios.Recent studies have shown that grid tagging-based methods based on character-pair relationship classification hold great potential for achieving unified NER.Nevertheless,how to enrich Chinese character-pair grid representations and capture deeper dependencies between character pairs to improve entity recognition performance remains an unresolved challenge.In this study,we enhance the character-pair grid representation by incorporating both local and global information.Significantly,we introduce a new approach by considering the character-pair grid representation matrix as a specialized image,converting the classification of character-pair relationships into a pixel-level semantic segmentation task.We devise a U-shaped network to extract multi-scale and deeper semantic information from the grid image,allowing for a more comprehensive understanding of associative features between character pairs.This approach leads to improved accuracy in predicting their relationships,ultimately enhancing entity recognition performance.We conducted experiments on two public CNER datasets in the biomedical domain,namely CMeEE-V2 and Diakg.The results demonstrate the effectiveness of our approach,which achieves F1-score improvements of 7.29 percentage points and 1.64 percentage points compared to the current state-of-the-art(SOTA)models,respectively.
文摘Spatial variation is often encountered when large scale field trials are conducted which can result in biased estimation or prediction of treatment (i.e. genotype) values. An effective removal of spatial variation is needed to ensure unbiased estimation or prediction and thus increase the accuracy of field data evaluation. A moving grid adjustment (MGA) method, which was proposed by Technow, was evaluated through Monte Carlo simulation for its statistical properties regarding field spatial variation control. Our simulation results showed that the MGA method can effectively account for field spatial variation if it does exist;however, this method will not change phenotype results if field spatial variation does not exist. The MGA method was applied to a large-scale cotton field trial data set with two representative agronomic traits: lint yield (strong field spatial pattern) and lint percentage (no field spatial pattern). The results suggested that the MGA method was able to effectively separate the spatial variation including blocking effects from random error variation for lint yield while the adjusted data remained almost identical to the original phenotypic data. With application of the MGA method, the estimated variance for residuals was significantly reduced (62.2% decrease) for lint yield while more genetic variation (29.7% increase) was detected compared to the original data analysis subject to the conventional randomized complete block design analysis. On the other hand, the results were almost identical for lint percentage with and without the application of the MGA method. Therefore, the MGA method can be a useful addition to enhance data analysis when field spatial pattern exists.
基金The National Key R&D Program of China under contract No.2021YFC3101603.
文摘Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales.
基金The financial support from the Program for Science and Technology of Henan Province of China(Grant No.242102210148)Henan Center for Outstanding Overseas Scientists(Grant No.GZS2022011)Songshan Laboratory Pre-Research Project(Grant No.YYJC032022022).
文摘Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightened security challenges within smart grids,IEDs pose significant risks due to inherent hardware and software vulner-abilities,as well as the openness and vulnerability of communication protocols.Smart grid security,distinct from traditional internet security,mainly relies on monitoring network security events at the platform layer,lacking an effective assessment mechanism for IEDs.Hence,we incorporate considerations for both cyber-attacks and physical faults,presenting security assessment indicators and methods specifically tailored for IEDs.Initially,we outline the security monitoring technology for IEDs,considering the necessary data sources for their security assessment.Subsequently,we classify IEDs and establish a comprehensive security monitoring index system,incorporating factors such as running states,network traffic,and abnormal behaviors.This index system contains 18 indicators in 3 categories.Additionally,we elucidate quantitative methods for various indicators and propose a hybrid security assessment method known as GRCW-hybrid,combining grey relational analysis(GRA),analytic hierarchy process(AHP),and entropy weight method(EWM).According to the proposed assessment method,the security risk level of IEDs can be graded into 6 levels,namely 0,1,2,3,4,and 5.The higher the level,the greater the security risk.Finally,we assess and simulate 15 scenarios in 3 categories,which are based on monitoring indicators and real-world situations encountered by IEDs.The results show that calculated security risk level based on the proposed assessment method are consistent with actual simulation.Thus,the reasonableness and effectiveness of the proposed index system and assessment method are validated.
基金supported in part by National Natural Science Foundation of China under Grant 61973073supported by Jiangsu Province Higher Education Basic Science (Natural Science) Research Project under Grant 23KJB470022
文摘This article proposes a dual-negative-objective coordinated control strategy for brushless doubly fed induction generator(BDFIG)based wind power generation system under unbalanced grid voltage.To alleviate the mechanical stress and impaction on rotating shaft,the negative control objective(NCO)of machine side converter(MSC)is set to suppress the ripple of electromagnetic torque.While the NCO of grid side converter(GSC)is selected to suppress the oscillation of total output active power or the unbalanced degree of total output current for BDFIG generation system.In comparison with traditional single converter control scheme of the MSC or GSC,dual NCOs can be satisfied at the same time due to the enlarged freedom degree in the proposed improved coordinated control system for back-toback converters.The effectiveness of proposed control strategy is validated by simulation and experimental results on a dual-cagerotor BDFIG(DCR-BDFIG)prototype.
基金supported by the NSF grant DMS-2111383Air Force Office of Scientific Research FA9550-18-1-0257the NSF grant DMS-2011838.
文摘This paper reviews the adaptive sparse grid discontinuous Galerkin(aSG-DG)method for computing high dimensional partial differential equations(PDEs)and its software implementation.The C++software package called AdaM-DG,implementing the aSG-DG method,is available on GitHub at https://github.com/JuntaoHuang/adaptive-multiresolution-DG.The package is capable of treating a large class of high dimensional linear and nonlinear PDEs.We review the essential components of the algorithm and the functionality of the software,including the multiwavelets used,assembling of bilinear operators,fast matrix-vector product for data with hierarchical structures.We further demonstrate the performance of the package by reporting the numerical error and the CPU cost for several benchmark tests,including linear transport equations,wave equations,and Hamilton-Jacobi(HJ)equations.