Most modern floating storage and regasification units(FSRU)are fitted with recondensing equipment that feed condensed boil-off gas(BOG)to the regasification unit in addition to a stream of liquefied natural gas(LNG)ex...Most modern floating storage and regasification units(FSRU)are fitted with recondensing equipment that feed condensed boil-off gas(BOG)to the regasification unit in addition to a stream of liquefied natural gas(LNG)extracted from the cargo tanks.Use of the recondenser during regasification operations reduces gas losses on FSRU.It does so by avoiding consumption of excess BOG,with no associated commercial benefit,in gas combustion units(GCU),steam dumps,flares etc.Here we consider the benefits of also using the recondenser in recirculation mode,returning condensed BOG to the cargo tanks in the form of slightly warmed LNG.Such recirculation can be beneficial during periods of low or no gas send out from the FSRU,often achieving significant reductions in gas losses,although it is not standard practice in the industry to do so.Once regasification is halted not much BOG is required by the FSRU engine room,so the vessel must handle this excess.By condensing the BOG to LNG and returning it to the cargo tanks,the significant volume reduction involved has the beneficial impact of slowing down tank pressure increase.The saturated vapor pressure(SVP)of the LNG,linked to its composition and temperature,plays a key role in the boil-off rate and resulting cargo tank pressure changes.Detailed analysis is provided to explain how using the FSRU recondenser in recirculation mode can be best exploited by considering the prevailing fill levels,temperatures and pressures in each of the cargo tanks,and returning the condensed LNG preferentially to certain tanks.FSRU efficiency can be improved,gas losses and emissions can be reduced,and more cargo sold by exploiting the capabilities of the FSRU recondenser in recirculation mode.Running the FSRU in recirculation mode requires no equipment modifications to standard recondensers,neither does it increase FSRU operating costs.展开更多
In this paper, the efficient utilization of liquefied natural gas(LNG) vaporization cold energy in offshore liquefied natural gas floating storage regasification unit(FSRU) is studied. On the basis of considering diff...In this paper, the efficient utilization of liquefied natural gas(LNG) vaporization cold energy in offshore liquefied natural gas floating storage regasification unit(FSRU) is studied. On the basis of considering different boil-off gas(BOG) practical treatment processes, a cascade comprehensive utilization scheme of cold energy of LNG based on the longitudinal three-stage organic Rankine cycle power generation and the low-grade cold energy used to frozen seawater desalination was proposed. Through the comparative analysis of the effects of the pure working fluid and eight mixed working fluids on the performance of the new system, the combination scheme of system mixed working fluid with the highest exergy efficiency of the system was determined. Then, the genetic algorithm was used to optimize the parameters of the new system. After optimization, the net output power of the LNG cold energy comprehensive utilization system proposed in this paper was 5186 kW, and the exergy efficiency is 30.6%. Considering the power generation and freshwater revenue, the annual economic benefit of the system operating is 18.71 million CNY.展开更多
文摘Most modern floating storage and regasification units(FSRU)are fitted with recondensing equipment that feed condensed boil-off gas(BOG)to the regasification unit in addition to a stream of liquefied natural gas(LNG)extracted from the cargo tanks.Use of the recondenser during regasification operations reduces gas losses on FSRU.It does so by avoiding consumption of excess BOG,with no associated commercial benefit,in gas combustion units(GCU),steam dumps,flares etc.Here we consider the benefits of also using the recondenser in recirculation mode,returning condensed BOG to the cargo tanks in the form of slightly warmed LNG.Such recirculation can be beneficial during periods of low or no gas send out from the FSRU,often achieving significant reductions in gas losses,although it is not standard practice in the industry to do so.Once regasification is halted not much BOG is required by the FSRU engine room,so the vessel must handle this excess.By condensing the BOG to LNG and returning it to the cargo tanks,the significant volume reduction involved has the beneficial impact of slowing down tank pressure increase.The saturated vapor pressure(SVP)of the LNG,linked to its composition and temperature,plays a key role in the boil-off rate and resulting cargo tank pressure changes.Detailed analysis is provided to explain how using the FSRU recondenser in recirculation mode can be best exploited by considering the prevailing fill levels,temperatures and pressures in each of the cargo tanks,and returning the condensed LNG preferentially to certain tanks.FSRU efficiency can be improved,gas losses and emissions can be reduced,and more cargo sold by exploiting the capabilities of the FSRU recondenser in recirculation mode.Running the FSRU in recirculation mode requires no equipment modifications to standard recondensers,neither does it increase FSRU operating costs.
基金supported by special project of R&D and industrialization of Marine equipment of national development and reform commission of China(National Development and Reform Commission High Technology[2015]No.1409)。
文摘In this paper, the efficient utilization of liquefied natural gas(LNG) vaporization cold energy in offshore liquefied natural gas floating storage regasification unit(FSRU) is studied. On the basis of considering different boil-off gas(BOG) practical treatment processes, a cascade comprehensive utilization scheme of cold energy of LNG based on the longitudinal three-stage organic Rankine cycle power generation and the low-grade cold energy used to frozen seawater desalination was proposed. Through the comparative analysis of the effects of the pure working fluid and eight mixed working fluids on the performance of the new system, the combination scheme of system mixed working fluid with the highest exergy efficiency of the system was determined. Then, the genetic algorithm was used to optimize the parameters of the new system. After optimization, the net output power of the LNG cold energy comprehensive utilization system proposed in this paper was 5186 kW, and the exergy efficiency is 30.6%. Considering the power generation and freshwater revenue, the annual economic benefit of the system operating is 18.71 million CNY.