Computational fluid dynamics was used and a numerical simulation analysis of boiling heat transfer in microchannels with three depths and three cross-sectional profiles was conducted.The heat transfer coefficient and ...Computational fluid dynamics was used and a numerical simulation analysis of boiling heat transfer in microchannels with three depths and three cross-sectional profiles was conducted.The heat transfer coefficient and bubble generation process of three microchannel structures with a width of 80μm and a depth of 40,60,and 80μm were compared during the boiling process,and the factors influencing bubble generation were studied.A visual test bench was built,and test substrates of different sizes were prepared using a micro-nano laser.During the test,the behavior characteristics of the bubbles on the boiling surface and the temperature change of the heated wall were collected with a high-speed camera and a temperature sensor.It was found that the microchannel with a depth of 80μm had the largest heat transfer coefficient and shortest bubble growth period,the rectangular channel had a larger peak heat transfer coefficient and a lower frequency of bubble occurrence,while the V-shaped channel had the shortest growth period,i.e.,the highest frequency of bubble occurrence,but its heat transfer coefficient was smaller than that of the rectangular channel.展开更多
The boiling heat transfer technology with cavity surfaces can provide higher heat flux under lower wall superheat,which is of great significance for the cooling of electronic chips and microelectromechanical devices.I...The boiling heat transfer technology with cavity surfaces can provide higher heat flux under lower wall superheat,which is of great significance for the cooling of electronic chips and microelectromechanical devices.In this paper,the boiling characteristics of the cavity surfaces are investigated based on the lattice Boltzmann(LB)method,focusing on the effects of cavity shapes,sizes,and heater thermal conductivity on the heat transfer performance.The results show that the triangular cavity has the best boiling performance since it has less residual vapor and higher bubble departure frequency than those of the trapezoidal and rectangular cavities.As the cavity size increases,the enhancement of heat transfer by the cavity mouth is suppressed by the heat accumulation effect at the heater bottom.The liquid rewetting process during bubble departure is the reason for the fluctuation of the space-averaged heat flux,and the heater thermal conductivity determines the fluctuation amplitude.The evaporation of liquid in the cavity with high thermal conductivity walls is more intense,resulting in shorter waiting time and higher bubble departure frequency.展开更多
Various enhanced surfaces have been proposed over the years to improve boiling heat transfer. This paper introduces an experimental setup designed for boiling demonstration in the graduate-level Heat Transfer course. ...Various enhanced surfaces have been proposed over the years to improve boiling heat transfer. This paper introduces an experimental setup designed for boiling demonstration in the graduate-level Heat Transfer course. The pool boiling performance of water under atmospheric pressure of 1.025 bar is investigated by using several structured surfaces at heat fluxes of 28 and 35 kW/m<sup>2</sup>. Surfaces with holes, rectangular grooves, and mushroom fins are manufactured by an NC-controlled vertical milling machine. The heat flux versus excess temperature graph is plotted by using thermocouple measurements of water and base temperatures of the boiling vessel. The separation, rise, and growth of individual vapor bubbles from the surface during boiling were recorded with a digital camera. The results for the plain surface are compared to the Rohsenow correlation. The enhancement of heat transfer coefficient (h) ranged between 15% - 44.5% for all structured surfaces. The highest heat transfer coefficient enhancement is observed between 41% - 56.5% for holed surface-3 (405 holes) compared to the plain surface. The excess temperature dropped around 29% - 34% for holed surface-3 (405 holes) compared to the plain surface. The heat transfer coefficient increases as the spacing between channels or holes decreases. While the bubbles on holed and mushroomed surfaces were spherical, the bubbles on the flat and grooved surfaces were observed as formless. The suggested economical test design could be appropriate to keep students focused and participating in the classroom.展开更多
Based on the superposition principle of the nucleate boiling and convective heat transfer terms,a new correlation is developed for flow boiling heat transfer characteristics in helically coiled tubes.The effects of th...Based on the superposition principle of the nucleate boiling and convective heat transfer terms,a new correlation is developed for flow boiling heat transfer characteristics in helically coiled tubes.The effects of the geometric and system parameters on heat transfer characteristics in helically coiled tubes are investigated by collecting large amounts of experimental data and analyzing the heat transfer mechanisms. The existing correlations are divided into two categories,and they are calculated with the experimental data.The Dn factor is introduced to take into account the effect of a complex geometrical structure on flow boiling heat transfer.A new correlation is developed for predicting the flow boiling heat transfer coefficients in the helically coiled tubes,which is validated by the experimental data of R134a flow boiling heat transfer in them;and the average relative error and root mean square error of the new correlation are calculated.The results show that the new correlation agrees well with the experimental data,indicating that the new correlation can be used for predicting flow boiling heat transfer characteristics in the helically coiled tubes.展开更多
This paper proposed a new experimental rig of testing flow boiling heat transfer of refrigerant and lubricant oil mixture. The quantity of oil in the test section can be controlled and regulated conveniently and accur...This paper proposed a new experimental rig of testing flow boiling heat transfer of refrigerant and lubricant oil mixture. The quantity of oil in the test section can be controlled and regulated conveniently and accurately by connecting separate lubricant oil circuit with test section in parallel. It was built up by retrofitting a multiple air-conditioner and installing three oil-separators in serials at the compressor outlet. And so the lubricant oil in the discharged refrigerant gas of compressor can be removed completely.The refrigerant flow rate through test section can be bypassed by the by-path circuit of indoor unit.This experimental rig has advantages such as on-line and continuous oil injection, short time of obtaining stability, flexible operation, simple control, which lead to high efficiency in the research of flow boiling heat transfer of refrigerant and lubricant oil mixture.展开更多
The surfactant additive octadecylamine (ODA) was used to enhance the flow boiling heat transfer of water in vertical copper tube, and the effects of the aqueous solution properties, mass fraction of ODA, mass flux and...The surfactant additive octadecylamine (ODA) was used to enhance the flow boiling heat transfer of water in vertical copper tube, and the effects of the aqueous solution properties, mass fraction of ODA, mass flux and heat flux etc. on flow boiling heat transfer were investigated. In order to analyze the mechanism of enhancement on boiling heat transfer with ODA, the copper surface was detected by XPS, and the diagram of binding energy was obtained. The results show that ODA can be adsorbed on the surface of the copper wall, and affects the properties of the heating surfaces and enhances the flow boiling heat transfer of water. Only in low heat flux and in a suitable range of concentration, can ODA aqueous solution enhance flow boiling heat transfer, and the suitable mass fraction of ODA is in the range of 1×10 -5 5×10 -5 . In addition, compared with water, ODA aqueous solution does not increase the flow drag under the same experimental conditions.展开更多
Heat transfer coefficients in nucleate pool boiling were measured on a horizontal copper surface for refrigerants, HFC-134a, HFC-32, and HFC-125, their binary and ternary mixtures under saturated conditions at 0.9MPa....Heat transfer coefficients in nucleate pool boiling were measured on a horizontal copper surface for refrigerants, HFC-134a, HFC-32, and HFC-125, their binary and ternary mixtures under saturated conditions at 0.9MPa. Compared to pure components, both binary and ternary mixtures showed lower heat transfer coefficients.This deterioration was more pronounced as heat flux was increased. Experimental data were compared with some empirical and semi-empirical correlations available in literature. For binary mixture, the accuracy of the correlations varied considerably with mixtures and the heat flux. Experimental data for HFC-32/134a/125 were also compared with available correlated equation obtained by Thome. For ternary mixture, the boiling range of binary mixture composed by the pure fluids with the lowest and the medium boiling points, and their concentration difference had important effects on boiling heat transfer coefficients.展开更多
An experimental investigation on the boiling heat transfer and frictional pressure drop of R245fa in a 7 mm horizontal micro-fin tube was performed.The results show that in terms of flow boiling heat transfer characte...An experimental investigation on the boiling heat transfer and frictional pressure drop of R245fa in a 7 mm horizontal micro-fin tube was performed.The results show that in terms of flow boiling heat transfer characteristics,boiling heat transfer coefficient(HTC)increases with mass velocity of R245fa,while it decreases with the increment of saturation temperature and heat flux.With the increase of vapor quality,HTC has a maximum and the corresponding vapor quality is about 0.4,which varies with the operating conditions.When vapor quality is larger than the transition point,HTC can be promoted more remarkably at higher mass velocity or lower saturation temperature.Among the four selected correlations,KANDLIKAR correlation matches with 91.6%of experimental data within the deviation range of±25%,and the absolute mean deviation is 11.2%.Also,in terms of frictional pressure drop characteristics of flow boiling,the results of this study show that frictional pressure drop increases with mass velocity and heat flux of R245fa,while it decreases with the increment of saturation temperature.MULLER-STEINHAGEN-HECK correlation shows the best prediction accuracy for frictional pressure drop among the four widely used correlations.It covers 84.1%of experimental data within the deviation range of±20%,and the absolute mean deviation is 10.1%.展开更多
This paper presents results of an experimental investigation carried out to determine the effects of surface material on nucleate pool boiling heat transfer of refrigerant R113. Experiments were performed on horizonta...This paper presents results of an experimental investigation carried out to determine the effects of surface material on nucleate pool boiling heat transfer of refrigerant R113. Experiments were performed on horizontal circular plates of brass, copper and aluminum. The heat transfer coefficient was evaluated by measuring wall superheat and effective heat flux removed by boiling. The experiments were carried out in the heat flux range of 8 to 200 kW/m2. The obtained results have shown significant effect of surface material, with copper providing the highest heat transfer coefficient among the samples, and aluminum the least. There was negligible difference at low heat fluxes, but copper showed 23% better performance at high heat fluxes than aluminum and 18% better than brass.展开更多
An experimental study has been carried out investigatesystematically the effects of acoustic cavi- tation parameters andfluid subcooling on boiling of acetone around a horizontal circulartube. The experimental results...An experimental study has been carried out investigatesystematically the effects of acoustic cavi- tation parameters andfluid subcooling on boiling of acetone around a horizontal circulartube. The experimental results show that acoustic cavitation enhancedremarkably the boiling heat transfer and decreased the incipientboiling superheat and that cavitation bubbles effect on boiling heattransfer reduced with cavitation distance. For boiling curves in aform of h-q', elevated cavitation distance shift nucleate boilingcurves to the right of the cor- responding ordinary pool boilingcurve. The associated mechanism of heat transfer enhancement isanalyzed with the consideration of cavitation bubble influence onvapor embryo.展开更多
Al2O3/R141b + Span-80 nanorefrigerant for 0.05 wt.% to 0.4 wt.% is prepared by ultrasonic vibration to investigate the influence of nanoparticle concentrations on flow boiling heat transfer of Al2O3/R141b + Span-80...Al2O3/R141b + Span-80 nanorefrigerant for 0.05 wt.% to 0.4 wt.% is prepared by ultrasonic vibration to investigate the influence of nanoparticle concentrations on flow boiling heat transfer of Al2O3/R141b + Span-80 in micro heat exchanger by direct metal laser sintering. Experimental results show that nanoparticle concentrations have significantly impact on heat transfer coefficients by homogeneity test of variances according to mathematical statistics. The heat transfer performance of Al2O3/R141b + Span-80 nanorefrigerant is enhanced after adding nanoparticles in the pure refrigerant R141b. The heat transfer coefficients of 0.05 wt.%, 0.1 wt.%, 0.2 wt.%, 0.3 wt.% and 0.4 wt.% Al2O3/R141 b + Span-80 nanorefrigerant respectively increase by 55.0% 72.0%, 53.0% 42.3% and 39.9% compared with the pure refrigerant R141b. The particle fluxes from viscosity gradient, non-uniform shear rate and Brownian motion cause particles to migrate in fluid especially in the process of flow boiling. This migration motion enhances heat transfer between nanoparticles and fluid. Therefore, the heat transfer performance of nanofluid is enhanced. It is important to note that the heat transfer coefficients nonlinearly increase with nanoparticle concentrations increasing. The heat transfer coefficients reach its maximum value at the mass concentration of 0.1% and then it decreases slightly. There exists an optimal mass concentration corresponding to the best heat transfer enhancement. The reason for the above phenomenon is attributed to nanoparticles deposition on the minichannel wall by Scanning Electron Microscopy observation. The channel surface wettability increases during the flow boiling experiment in the mass concentration range from 0.2 wt.% to 0.4 wt.%. The channel surface with wettability increasing needs more energy to produce a bubble. Therefore, the heat transfer coefficients decrease with nanopartide concentrations in the range from 0.2 wt.% to 0.4 wt.%. In addition, a new correlation has been proposed by fitting the experimental data considering the influence of mass concentrations on the heat trans- fer performance. The new correlation can effectively predict the heat transfer coefficient.展开更多
Boiling structures on evaporation surface of red copper sheet with a diameter (D) of 10 mm and a wall thickness (h) of 1 mm were processed by the ploughing-extrusion (P-E) processing method, which is one part of...Boiling structures on evaporation surface of red copper sheet with a diameter (D) of 10 mm and a wall thickness (h) of 1 mm were processed by the ploughing-extrusion (P-E) processing method, which is one part of the phase-change heat sink for high power (HP) light emitting diode (LED). The experimental results show that two different structures of rectangular- and triangular-shaped micro-grooves are formed in P-E process. When P-E depth (ap), interval of helical grooves (dp) and rotation speed (n) are 0.12 ram, 0.2 mm and 100 r/min, respectively, the boiling structures of triangular-shaped grooves with the fin height of 0.15 mm that has good evaporation performance are obtained. The shapes of the boiling structures are restricted by dp and ap, and dp is determined by n and amount of feed (f). The ploughing speed has an important influence on the formation of groove structure in P-E process.展开更多
Boiling of water/triethyleneglycol(TEG)binary solution has a wide-ranging application in the gas processing engineering.Design,operation and optimization of the involved boilers require accurate prediction of boiling ...Boiling of water/triethyleneglycol(TEG)binary solution has a wide-ranging application in the gas processing engineering.Design,operation and optimization of the involved boilers require accurate prediction of boiling heat transfer coefficient between surface and solution.In this investigation,nucleate pool boiling heat transfer coefficient has been experimentally measured on a horizontal rod heater in water/TEG binary solutions in a wide range of concentrations and heat fluxes under ambient condition.The present experimental data are correlated using major existing correlations.In addition a correlation is presented for prediction of pool boiling heat transfer for the system in which the vapour pressure of one component is negligible.This model is based on the mass transfer rate equation for prediction of the concentration at the bubble vapor/liquid interface.Based on this prediction,the temperature of the interface and accordingly,the boiling heat transfer coefficient could be straightforwardly calculated from the known concentration at the interface.It is shown that this simple model has sufficient accuracy and is acceptable below the medium concentrations of TEG when the vapor equilibrium concentration of TEG is almost zero.The presented model excludes any tuning parameter and requires very few physical properties to apply.展开更多
A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. T...A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39mm ID and 2.0m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum.The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data.展开更多
In order to realize safe and stable operation of a water-cooled W/Cu divertor under high heating condition,the exact knowledge of its subcooled boiling heat transfer characteristics under different design parameters i...In order to realize safe and stable operation of a water-cooled W/Cu divertor under high heating condition,the exact knowledge of its subcooled boiling heat transfer characteristics under different design parameters is crucial.In this paper,subcooled boiling heat transfer in a water-cooled W/Cu divertor was numerically investigated based on computational fluid dynamic(CFD).The boiling heat transfer was simulated based on the Euler homogeneous phase model,and local differences of liquid physical properties were considered under one-sided high heating conditions.The calculated wall temperature was in good agreement with experimental results,with the maximum error of 5%only.On this basis,the void fraction distribution,flow field and heat transfer coefficient(HTC)distribution were obtained.The effects of heat flux,inlet velocity and inlet temperature on temperature distribution and pressure drop of a water-cooled W/Cu divertor were also investigated.These results provide a valuable reference for the thermal-hydraulic design of a water-cooled W/Cu divertor.展开更多
The increasing demand of cooling in internal combustion engines(ICE)due to engine downsizing may require a shift in the heat removal method from the traditional single phase liquid convection to the application of new...The increasing demand of cooling in internal combustion engines(ICE)due to engine downsizing may require a shift in the heat removal method from the traditional single phase liquid convection to the application of new technologies based on subcooled fluid boiling.Accordingly,in the present study,experiments based on subcooled flow boiling of 50/50 by volume mixture of ethylene glycol and water coolant(EG/W)in a rectangular channel heated by a cast iron block are presented.Different degrees of subcooling,velocity and pressure conditions are examined.Comparison of three empirical reference models shows that noticeable deviations occur especially when low bulk subcooling and velocity conditions are considered.On the basis of the experimental data,a modified power-type wall heat flux model is developed and its ability to represent adequately reality is tested through numerical simulations against a reference rig case and a practical diesel engine.Computational results show that this modified model can effectively be used for practical engine cooling system design.展开更多
The objective of this work was to investigate nucleate pool boiling heat transfer performance and mechanism of R134a and R142b on a twisted tube with machine processed porous surface (T-MPPS tube) as well as to dete...The objective of this work was to investigate nucleate pool boiling heat transfer performance and mechanism of R134a and R142b on a twisted tube with machine processed porous surface (T-MPPS tube) as well as to determine its potential application to flooded refrigerant evaporators. In the experimental range, the boiling heat transfer coefficients of R134a on a T-MPPS tube were 1.8-2.0 times larger than those of R134a on a plain tube. In addition, the developed experimental correlations verified that the predictions of the heat transfer coefficients of boiling R134a and R142bon a T-MPPS tube at the experimental conditions were considerably accurate.展开更多
The passive residual heat removal exchanger (PRHR HX),which is a key equipment of the passive residual heat removal system,is installed in an elevated pool.Its heat transfer performance affects security and economics ...The passive residual heat removal exchanger (PRHR HX),which is a key equipment of the passive residual heat removal system,is installed in an elevated pool.Its heat transfer performance affects security and economics of the reactor,and boiling heat transfer in the liquid surrounding the exchanger occurs when the liquid saturation temperature exceeded.The smooth tubes,which are widely used as heat transfer tubes in PRHR HX,can be replaced by some enhanced tubes to improve the boiling heat transfer capability.In this paper,the pool boiling heat transfer characteristics of smooth tube and a machined porous surface tube are investigated by using high-pressure steam condensing inside tube as heating source.Compared with smooth tube,the porous surface tube considerably enhances the boiling heat transfer,and shortens the time significantly before reaching the liquid saturation temperature.Its boiling heat transfer coefficient increases from 68% to 75%,and the wall superheat decreases by 1.5oC.Combining effect of condensation inside tube with boiling outside tube,the axial wall temperatures of heat transfer tube are neither uniform nor linear distribution.Based on these investigations,enhance mechanism of the porous surface tube is analyzed.展开更多
基金supported by the National Natural Science Foundation of China Youth Program(Grant No.51905328).
文摘Computational fluid dynamics was used and a numerical simulation analysis of boiling heat transfer in microchannels with three depths and three cross-sectional profiles was conducted.The heat transfer coefficient and bubble generation process of three microchannel structures with a width of 80μm and a depth of 40,60,and 80μm were compared during the boiling process,and the factors influencing bubble generation were studied.A visual test bench was built,and test substrates of different sizes were prepared using a micro-nano laser.During the test,the behavior characteristics of the bubbles on the boiling surface and the temperature change of the heated wall were collected with a high-speed camera and a temperature sensor.It was found that the microchannel with a depth of 80μm had the largest heat transfer coefficient and shortest bubble growth period,the rectangular channel had a larger peak heat transfer coefficient and a lower frequency of bubble occurrence,while the V-shaped channel had the shortest growth period,i.e.,the highest frequency of bubble occurrence,but its heat transfer coefficient was smaller than that of the rectangular channel.
基金Project supported by the National Natural Science Foundation of China(Nos.11872083,12172017,12202021)。
文摘The boiling heat transfer technology with cavity surfaces can provide higher heat flux under lower wall superheat,which is of great significance for the cooling of electronic chips and microelectromechanical devices.In this paper,the boiling characteristics of the cavity surfaces are investigated based on the lattice Boltzmann(LB)method,focusing on the effects of cavity shapes,sizes,and heater thermal conductivity on the heat transfer performance.The results show that the triangular cavity has the best boiling performance since it has less residual vapor and higher bubble departure frequency than those of the trapezoidal and rectangular cavities.As the cavity size increases,the enhancement of heat transfer by the cavity mouth is suppressed by the heat accumulation effect at the heater bottom.The liquid rewetting process during bubble departure is the reason for the fluctuation of the space-averaged heat flux,and the heater thermal conductivity determines the fluctuation amplitude.The evaporation of liquid in the cavity with high thermal conductivity walls is more intense,resulting in shorter waiting time and higher bubble departure frequency.
文摘Various enhanced surfaces have been proposed over the years to improve boiling heat transfer. This paper introduces an experimental setup designed for boiling demonstration in the graduate-level Heat Transfer course. The pool boiling performance of water under atmospheric pressure of 1.025 bar is investigated by using several structured surfaces at heat fluxes of 28 and 35 kW/m<sup>2</sup>. Surfaces with holes, rectangular grooves, and mushroom fins are manufactured by an NC-controlled vertical milling machine. The heat flux versus excess temperature graph is plotted by using thermocouple measurements of water and base temperatures of the boiling vessel. The separation, rise, and growth of individual vapor bubbles from the surface during boiling were recorded with a digital camera. The results for the plain surface are compared to the Rohsenow correlation. The enhancement of heat transfer coefficient (h) ranged between 15% - 44.5% for all structured surfaces. The highest heat transfer coefficient enhancement is observed between 41% - 56.5% for holed surface-3 (405 holes) compared to the plain surface. The excess temperature dropped around 29% - 34% for holed surface-3 (405 holes) compared to the plain surface. The heat transfer coefficient increases as the spacing between channels or holes decreases. While the bubbles on holed and mushroomed surfaces were spherical, the bubbles on the flat and grooved surfaces were observed as formless. The suggested economical test design could be appropriate to keep students focused and participating in the classroom.
基金The National Natural Science Foundation of China(No.50776055,51076084)
文摘Based on the superposition principle of the nucleate boiling and convective heat transfer terms,a new correlation is developed for flow boiling heat transfer characteristics in helically coiled tubes.The effects of the geometric and system parameters on heat transfer characteristics in helically coiled tubes are investigated by collecting large amounts of experimental data and analyzing the heat transfer mechanisms. The existing correlations are divided into two categories,and they are calculated with the experimental data.The Dn factor is introduced to take into account the effect of a complex geometrical structure on flow boiling heat transfer.A new correlation is developed for predicting the flow boiling heat transfer coefficients in the helically coiled tubes,which is validated by the experimental data of R134a flow boiling heat transfer in them;and the average relative error and root mean square error of the new correlation are calculated.The results show that the new correlation agrees well with the experimental data,indicating that the new correlation can be used for predicting flow boiling heat transfer characteristics in the helically coiled tubes.
文摘This paper proposed a new experimental rig of testing flow boiling heat transfer of refrigerant and lubricant oil mixture. The quantity of oil in the test section can be controlled and regulated conveniently and accurately by connecting separate lubricant oil circuit with test section in parallel. It was built up by retrofitting a multiple air-conditioner and installing three oil-separators in serials at the compressor outlet. And so the lubricant oil in the discharged refrigerant gas of compressor can be removed completely.The refrigerant flow rate through test section can be bypassed by the by-path circuit of indoor unit.This experimental rig has advantages such as on-line and continuous oil injection, short time of obtaining stability, flexible operation, simple control, which lead to high efficiency in the research of flow boiling heat transfer of refrigerant and lubricant oil mixture.
基金The Natural Science Foundation of Tianjin(No.94220)
文摘The surfactant additive octadecylamine (ODA) was used to enhance the flow boiling heat transfer of water in vertical copper tube, and the effects of the aqueous solution properties, mass fraction of ODA, mass flux and heat flux etc. on flow boiling heat transfer were investigated. In order to analyze the mechanism of enhancement on boiling heat transfer with ODA, the copper surface was detected by XPS, and the diagram of binding energy was obtained. The results show that ODA can be adsorbed on the surface of the copper wall, and affects the properties of the heating surfaces and enhances the flow boiling heat transfer of water. Only in low heat flux and in a suitable range of concentration, can ODA aqueous solution enhance flow boiling heat transfer, and the suitable mass fraction of ODA is in the range of 1×10 -5 5×10 -5 . In addition, compared with water, ODA aqueous solution does not increase the flow drag under the same experimental conditions.
基金Century Programme of Chinese Academy of Sciences.
文摘Heat transfer coefficients in nucleate pool boiling were measured on a horizontal copper surface for refrigerants, HFC-134a, HFC-32, and HFC-125, their binary and ternary mixtures under saturated conditions at 0.9MPa. Compared to pure components, both binary and ternary mixtures showed lower heat transfer coefficients.This deterioration was more pronounced as heat flux was increased. Experimental data were compared with some empirical and semi-empirical correlations available in literature. For binary mixture, the accuracy of the correlations varied considerably with mixtures and the heat flux. Experimental data for HFC-32/134a/125 were also compared with available correlated equation obtained by Thome. For ternary mixture, the boiling range of binary mixture composed by the pure fluids with the lowest and the medium boiling points, and their concentration difference had important effects on boiling heat transfer coefficients.
基金Project(51606162)supported by the National Natural Science Foundation of ChinaProject(2018JJ2399)supported by the Natural Science Foundation of Hunan Province,China
文摘An experimental investigation on the boiling heat transfer and frictional pressure drop of R245fa in a 7 mm horizontal micro-fin tube was performed.The results show that in terms of flow boiling heat transfer characteristics,boiling heat transfer coefficient(HTC)increases with mass velocity of R245fa,while it decreases with the increment of saturation temperature and heat flux.With the increase of vapor quality,HTC has a maximum and the corresponding vapor quality is about 0.4,which varies with the operating conditions.When vapor quality is larger than the transition point,HTC can be promoted more remarkably at higher mass velocity or lower saturation temperature.Among the four selected correlations,KANDLIKAR correlation matches with 91.6%of experimental data within the deviation range of±25%,and the absolute mean deviation is 11.2%.Also,in terms of frictional pressure drop characteristics of flow boiling,the results of this study show that frictional pressure drop increases with mass velocity and heat flux of R245fa,while it decreases with the increment of saturation temperature.MULLER-STEINHAGEN-HECK correlation shows the best prediction accuracy for frictional pressure drop among the four widely used correlations.It covers 84.1%of experimental data within the deviation range of±20%,and the absolute mean deviation is 10.1%.
文摘This paper presents results of an experimental investigation carried out to determine the effects of surface material on nucleate pool boiling heat transfer of refrigerant R113. Experiments were performed on horizontal circular plates of brass, copper and aluminum. The heat transfer coefficient was evaluated by measuring wall superheat and effective heat flux removed by boiling. The experiments were carried out in the heat flux range of 8 to 200 kW/m2. The obtained results have shown significant effect of surface material, with copper providing the highest heat transfer coefficient among the samples, and aluminum the least. There was negligible difference at low heat fluxes, but copper showed 23% better performance at high heat fluxes than aluminum and 18% better than brass.
基金Supported bv the National Key Basic Research Science Foundation of China (G2000026305).
文摘An experimental study has been carried out investigatesystematically the effects of acoustic cavi- tation parameters andfluid subcooling on boiling of acetone around a horizontal circulartube. The experimental results show that acoustic cavitation enhancedremarkably the boiling heat transfer and decreased the incipientboiling superheat and that cavitation bubbles effect on boiling heattransfer reduced with cavitation distance. For boiling curves in aform of h-q', elevated cavitation distance shift nucleate boilingcurves to the right of the cor- responding ordinary pool boilingcurve. The associated mechanism of heat transfer enhancement isanalyzed with the consideration of cavitation bubble influence onvapor embryo.
基金Supported by the National Natural Science Foundation of China[21276090]
文摘Al2O3/R141b + Span-80 nanorefrigerant for 0.05 wt.% to 0.4 wt.% is prepared by ultrasonic vibration to investigate the influence of nanoparticle concentrations on flow boiling heat transfer of Al2O3/R141b + Span-80 in micro heat exchanger by direct metal laser sintering. Experimental results show that nanoparticle concentrations have significantly impact on heat transfer coefficients by homogeneity test of variances according to mathematical statistics. The heat transfer performance of Al2O3/R141b + Span-80 nanorefrigerant is enhanced after adding nanoparticles in the pure refrigerant R141b. The heat transfer coefficients of 0.05 wt.%, 0.1 wt.%, 0.2 wt.%, 0.3 wt.% and 0.4 wt.% Al2O3/R141 b + Span-80 nanorefrigerant respectively increase by 55.0% 72.0%, 53.0% 42.3% and 39.9% compared with the pure refrigerant R141b. The particle fluxes from viscosity gradient, non-uniform shear rate and Brownian motion cause particles to migrate in fluid especially in the process of flow boiling. This migration motion enhances heat transfer between nanoparticles and fluid. Therefore, the heat transfer performance of nanofluid is enhanced. It is important to note that the heat transfer coefficients nonlinearly increase with nanoparticle concentrations increasing. The heat transfer coefficients reach its maximum value at the mass concentration of 0.1% and then it decreases slightly. There exists an optimal mass concentration corresponding to the best heat transfer enhancement. The reason for the above phenomenon is attributed to nanoparticles deposition on the minichannel wall by Scanning Electron Microscopy observation. The channel surface wettability increases during the flow boiling experiment in the mass concentration range from 0.2 wt.% to 0.4 wt.%. The channel surface with wettability increasing needs more energy to produce a bubble. Therefore, the heat transfer coefficients decrease with nanopartide concentrations in the range from 0.2 wt.% to 0.4 wt.%. In addition, a new correlation has been proposed by fitting the experimental data considering the influence of mass concentrations on the heat trans- fer performance. The new correlation can effectively predict the heat transfer coefficient.
基金Projects(50436010, 50675070) supported by the National Natural Science Foundation of China Project(07118064) supported by the Natural Science Foundation of Guangdong Province, China+1 种基金 Project(U0834002) supported by the Joint Fund of NSFC-Guangdong of ChinaProjects(SY200806300289A, JSA200903190981A) supported by Shenzhen Scientific Program, China
文摘Boiling structures on evaporation surface of red copper sheet with a diameter (D) of 10 mm and a wall thickness (h) of 1 mm were processed by the ploughing-extrusion (P-E) processing method, which is one part of the phase-change heat sink for high power (HP) light emitting diode (LED). The experimental results show that two different structures of rectangular- and triangular-shaped micro-grooves are formed in P-E process. When P-E depth (ap), interval of helical grooves (dp) and rotation speed (n) are 0.12 ram, 0.2 mm and 100 r/min, respectively, the boiling structures of triangular-shaped grooves with the fin height of 0.15 mm that has good evaporation performance are obtained. The shapes of the boiling structures are restricted by dp and ap, and dp is determined by n and amount of feed (f). The ploughing speed has an important influence on the formation of groove structure in P-E process.
文摘Boiling of water/triethyleneglycol(TEG)binary solution has a wide-ranging application in the gas processing engineering.Design,operation and optimization of the involved boilers require accurate prediction of boiling heat transfer coefficient between surface and solution.In this investigation,nucleate pool boiling heat transfer coefficient has been experimentally measured on a horizontal rod heater in water/TEG binary solutions in a wide range of concentrations and heat fluxes under ambient condition.The present experimental data are correlated using major existing correlations.In addition a correlation is presented for prediction of pool boiling heat transfer for the system in which the vapour pressure of one component is negligible.This model is based on the mass transfer rate equation for prediction of the concentration at the bubble vapor/liquid interface.Based on this prediction,the temperature of the interface and accordingly,the boiling heat transfer coefficient could be straightforwardly calculated from the known concentration at the interface.It is shown that this simple model has sufficient accuracy and is acceptable below the medium concentrations of TEG when the vapor equilibrium concentration of TEG is almost zero.The presented model excludes any tuning parameter and requires very few physical properties to apply.
文摘A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39mm ID and 2.0m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum.The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2010GB104005)Funding of Jiangsu Innovation Program for Graduate Education(CXLX12.0170)the Fundamental Research Funds for the Central Universities of China
文摘In order to realize safe and stable operation of a water-cooled W/Cu divertor under high heating condition,the exact knowledge of its subcooled boiling heat transfer characteristics under different design parameters is crucial.In this paper,subcooled boiling heat transfer in a water-cooled W/Cu divertor was numerically investigated based on computational fluid dynamic(CFD).The boiling heat transfer was simulated based on the Euler homogeneous phase model,and local differences of liquid physical properties were considered under one-sided high heating conditions.The calculated wall temperature was in good agreement with experimental results,with the maximum error of 5%only.On this basis,the void fraction distribution,flow field and heat transfer coefficient(HTC)distribution were obtained.The effects of heat flux,inlet velocity and inlet temperature on temperature distribution and pressure drop of a water-cooled W/Cu divertor were also investigated.These results provide a valuable reference for the thermal-hydraulic design of a water-cooled W/Cu divertor.
基金This work was supported by the National Key Research and Development Project of China(Grant No.2017YFB0103504)National Natural Science Foundation of China(Grant No.51576116).
文摘The increasing demand of cooling in internal combustion engines(ICE)due to engine downsizing may require a shift in the heat removal method from the traditional single phase liquid convection to the application of new technologies based on subcooled fluid boiling.Accordingly,in the present study,experiments based on subcooled flow boiling of 50/50 by volume mixture of ethylene glycol and water coolant(EG/W)in a rectangular channel heated by a cast iron block are presented.Different degrees of subcooling,velocity and pressure conditions are examined.Comparison of three empirical reference models shows that noticeable deviations occur especially when low bulk subcooling and velocity conditions are considered.On the basis of the experimental data,a modified power-type wall heat flux model is developed and its ability to represent adequately reality is tested through numerical simulations against a reference rig case and a practical diesel engine.Computational results show that this modified model can effectively be used for practical engine cooling system design.
基金the Guangdong Provincial Scientific and Technological Development Program (2004B10201008)
文摘The objective of this work was to investigate nucleate pool boiling heat transfer performance and mechanism of R134a and R142b on a twisted tube with machine processed porous surface (T-MPPS tube) as well as to determine its potential application to flooded refrigerant evaporators. In the experimental range, the boiling heat transfer coefficients of R134a on a T-MPPS tube were 1.8-2.0 times larger than those of R134a on a plain tube. In addition, the developed experimental correlations verified that the predictions of the heat transfer coefficients of boiling R134a and R142bon a T-MPPS tube at the experimental conditions were considerably accurate.
文摘The passive residual heat removal exchanger (PRHR HX),which is a key equipment of the passive residual heat removal system,is installed in an elevated pool.Its heat transfer performance affects security and economics of the reactor,and boiling heat transfer in the liquid surrounding the exchanger occurs when the liquid saturation temperature exceeded.The smooth tubes,which are widely used as heat transfer tubes in PRHR HX,can be replaced by some enhanced tubes to improve the boiling heat transfer capability.In this paper,the pool boiling heat transfer characteristics of smooth tube and a machined porous surface tube are investigated by using high-pressure steam condensing inside tube as heating source.Compared with smooth tube,the porous surface tube considerably enhances the boiling heat transfer,and shortens the time significantly before reaching the liquid saturation temperature.Its boiling heat transfer coefficient increases from 68% to 75%,and the wall superheat decreases by 1.5oC.Combining effect of condensation inside tube with boiling outside tube,the axial wall temperatures of heat transfer tube are neither uniform nor linear distribution.Based on these investigations,enhance mechanism of the porous surface tube is analyzed.