The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric d...The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric deformation modes in layered soft rock tunnels with large deformations.Subsequently,we construct a mechanical model under ideal conditions for controlling the roof of layered soft rock tunnels through high preload with the support of NPR anchor cables.The prominent roles of long and short NPR anchor cables in the support system are also analyzed.The results indicate the significance of high preload in controlling the roof of layered soft rock tunnels.The short NPR anchor cables effectively improve the integrity of the stratified soft rock layers,while the long NPR anchor cables effectively mobilize the self-bearing capacity of deep-stable rock layers.Finally,the high-preload support method with NPR anchor cables is validated to have a good effect on controlling large deformations in layered soft rock tunnels through field monitoring data.展开更多
To overcome large deformation of deep phosphate rock roadways and pillar damage,a new type of constant-resistance large-deformation negative Poisson’s ratio(NPR)bolt that can withstand a high prestress of at least 13...To overcome large deformation of deep phosphate rock roadways and pillar damage,a new type of constant-resistance large-deformation negative Poisson’s ratio(NPR)bolt that can withstand a high prestress of at least 130 KN was developed.In the conducted tests,the amount of deformation was 200-2000 mm,the breaking force reached 350 KN,and a high constant-resistance pre-stress was maintained during the deformation process.A stress compensation theory of phosphate rock excavation based on NPR bolts is proposed together with a balance system for bolt compensation of the time-space effect and high NPR pre-stress.Traditional split-set rock bolts are unable to maintain the stability of roadway roofs and pillars.To verify the support effect of the proposed bolt,field tests were conducted using both the proposed NPR bolts and split-set rock bolts as support systems on the same mining face.In addition,the stress compensation mechanism of roadway mining was simulated using the particle flow code in three dimensions(PFC^(3D))-fast Lagrangian analysis of continua(FLAC^(3D))particle-flow coupling numerical model.On-site monitoring and numerical simulations showed that the NPR excavation compensation support scheme effectively improves the stress state of the bolts and reduces the deformation of the surrounding rock.Compared to the original support scheme,the final deformation of the surrounding rock was reduced by approximately 70%.These results significantly contribute to domestic and foreign research on phosphate-rock NPR compensation support technology,theoretical systems,and engineering practices,and further promote technological innovation in the phosphate rock mining industry.展开更多
The designing method and the supporting mechanism of both bolt and small cable anchor for full seam roadway in the weaker thick coal seam are systematically analyzed, and the construction technology and the supporting...The designing method and the supporting mechanism of both bolt and small cable anchor for full seam roadway in the weaker thick coal seam are systematically analyzed, and the construction technology and the supporting results are briefly summarized.展开更多
Designing reliable yielding support system to mitigate the effect of the kinetic energy in burst-prone conditions in mining and tunneling excavations is one of the challenges for geotechnical engineers. A combination ...Designing reliable yielding support system to mitigate the effect of the kinetic energy in burst-prone conditions in mining and tunneling excavations is one of the challenges for geotechnical engineers. A combination of the support elements can be used to increase rock strength and minimise the displacement of unstable rock mass. It is important to understand how the support system works to ensure the stability of underground excavations. Cable bolts have been commonly used as an effective underground support system and an element of reinforcement to improve rock stability. Cable bolts are usually considered to be subjected to static loads under relatively low stress environments, however, in burst-prone conditions, they might be subjected to dynamic loads. Cable bolts as well as other support elements are used in burst-prone conditions to absorb the kinetic energy of the removed rock to avoid sudden and violent failures. This paper develops numerical and a novel analytical simulation technique for cable bolts to assess their structural behaviour under static and dynamic loading conditions. The numerical and analytical models are then validated against experimental observations reported in the literature, which demonstrates the reliability of the proposed models.展开更多
An experimental device was designed for studying methane explosion ignited by sparks of cable bolt breakage. With the methane concentration being in explosion range, a series of experiments were conducted to study the...An experimental device was designed for studying methane explosion ignited by sparks of cable bolt breakage. With the methane concentration being in explosion range, a series of experiments were conducted to study the law of spark generation during cable bolt breakage and the probability of methane explosion caused by the spark. The results show that the probability of generating sparks during cable bolt breakage is 50%. The spark generated by the breakage of steel cable bolt strand can't ignite a methane explosion. A detection was carried out using infrared-ray imaging apparatus (IRIA) to measure temperature of the spark generated by cable bolt breakage. It is indicated that the maximum temperature of the spark generated by cable bolt breakage is far less than the required ignition temperature for a methane explosion.展开更多
Reports on corrosion failure of cable bolts,used in mining and civil industries,have been increasing in the past two decades.The previous studies found that pitting corrosion on the surface of a cable bolt can initiat...Reports on corrosion failure of cable bolts,used in mining and civil industries,have been increasing in the past two decades.The previous studies found that pitting corrosion on the surface of a cable bolt can initiate premature failure of the bolt.In this study,the role of Acidithiobacillus ferrooxidans(A.ferrooxidans)bacterium in the occurrence of pitting corrosion in cable bolts was studied.Stressed coupons,made from the wires of cable bolts,were immersed in testing bottles containing groundwater collected from an underground coal mine and a mixture of A.ferrooxidans and geomaterials.It was observed that A.ferrooxidans caused pitting corrosion on the surface of cable bolts in the near-neutral environment.The presence of geomaterials slightly affected the p H of the environment;however,it did not have any significant influence on the corrosion activity of A.ferrooxidans.This study suggests that the common bacterium A.ferrooxidans found in many underground environments can be a threat to cable bolts'integrity by creating initiation points for other catastrophic failures such as stress corrosion cracking.展开更多
The Gaoloushan Tunnel in Longnan City,Gansu Province,China,frequently experiences rockburst disasters due to high in-situ stress.Managing rockburst in deep-buried tunnels remains a challenging issue.This paper employs...The Gaoloushan Tunnel in Longnan City,Gansu Province,China,frequently experiences rockburst disasters due to high in-situ stress.Managing rockburst in deep-buried tunnels remains a challenging issue.This paper employs RFPA(Rock Failure Process Analysis)software to establish a calculation model of constant resistance and large deformation(CRLD)anchorages and analyzes the effects of different support methods and pre-stress levels on rockburst.We simulate the process of tunnel rockburst disasters and find that ordinary anchor support incurs rockburst on the right arch waist and arch top,forming a V-shaped explosion pit.CRLD anchor support has several advantages in rockburst control,such as more uniform stress distribution in the surrounding rock,a uniform distribution of plastic zones,less noticeable damage to the tunnel,and effective control of the arch top displacement.The effectiveness of the CRLD anchor support under varying pre-stress conditions shows that a higher prestress results in a smaller plastic zone of the surrounding rock and arch top displacement and a lower number of acoustic emission signals,which better explains the excavation compensation effect.Moreover,adding long anchorages in the deep surrounding rock area can better control rockburst and reduce surrounding rock deformation.Based on these findings,we propose a comprehensive control system that combines long and short anchorages and provides the optimal scheme based on calculations.Therefore,by using high-prestress CRLD anchor support and the combination of long and short anchorages at critical positions,we can enhance the integrity of the surrounding rock,effectively absorb the energy released by the surrounding rock deformation,and reduce the incidence of rockburst disasters.展开更多
In order to solve the problem of surrounding rock control in soft coal seam roadway, taking the centralized return airway of No. 2 coal seam in Liangdu Coal Industry as the research background, the mechanical con...In order to solve the problem of surrounding rock control in soft coal seam roadway, taking the centralized return airway of No. 2 coal seam in Liangdu Coal Industry as the research background, the mechanical conditions of roadway surrounding rock were analyzed by means of field investigation, rock mechanics experiment and numerical simulation. The design principles of roadway support in soft coal seam were put forward: high strength anchor cable support, high preload support and high stiffness support. The bearing capacity of surrounding rock was strengthened by anchor cable support, and the deformation and failure of surrounding rock were effectively controlled. Through the numerical simulation method, the deformation and plastic failure range of roadwaysunder different support schemes are compared and analyzed. The support scheme of centralized transportation roadway is studied and determined, and the field test is carried out, which effectively controls the deformation of surrounding rock of roadway in weak coal seam.展开更多
With the enlarge of cross section of roadway, the radius of plastic area and broken area increase, and the tensile stress and shear stress distributing in roof coal-rock layers relevantly increase, which induce suppor...With the enlarge of cross section of roadway, the radius of plastic area and broken area increase, and the tensile stress and shear stress distributing in roof coal-rock layers relevantly increase, which induce support effect not obvious for ordinary bolt(cable). While bounding point and support structure of the truss cable is in vertex angle of roadway, and supplies coal-rock layers in bounding area with the horizontal and vertical pressure, so it settles the support problems in large cross section coal roadway. From the point of view of mechanics, gave emphasis on the invalid mechanics of ordinary bolt (cable) in large cross section coal roadway and supported mechanics of prestress truss cable. The author successfully used this technique in Wuyang Mine, and had the huge economic efficiency and the social benefit.展开更多
This paper presents a semi-active strategy for seismic protection of a benchmark cable-stayed bridge with consideration of multiple-support excitations. In this control strategy, Magnetorheological (MR) dampers are pr...This paper presents a semi-active strategy for seismic protection of a benchmark cable-stayed bridge with consideration of multiple-support excitations. In this control strategy, Magnetorheological (MR) dampers are proposed as control devices, a LQG-clipped-optimal control algorithm is employed. An active control strategy, shown in previous researches to perform well at controlling the benchmark bridge when uniform earthquake motion was assumed, is also used in this study to control this benchmark bridge with consideration of multiple-support excitations. The performance of active control system is compared to that of the presented semi-active control strategy. Because the MR fluid damper is a con-trollable energy- dissipation device that cannot add mechanical energy to the structural system, the proposed control strategy is fail-safe in that bounded-input, bounded-output stability of the controlled structure is guaranteed. The numerical results demonstrated that the performance of the presented control design is nearly the same as that of the active control system; and that the MR dampers can effectively be used to control seismically excited cable-stayed bridges with multiple-support excitations.展开更多
Explaining fundamentals of application of cable bolting for a thick seam depillaring,this paper summarizes the results of field studies conducted during adoption of this approach in more than fifteen panels of Madhusu...Explaining fundamentals of application of cable bolting for a thick seam depillaring,this paper summarizes the results of field studies conducted during adoption of this approach in more than fifteen panels of Madhusudanpur 7 pit and incline mine.Nearly 7.0 m thick Kajora top coal seam of this mine is developed on pillars along the floor horizon to an average height of 3.0 m,leaving a coal band of around 4.0 m along the roof.Analysis of procured core samples showed that roof strata are easily caveable with a caveability index value of around 2000 only.Easily caveable overlying strata and shallow depth of cover alleviated most of the expected strata mechanics problems of the thick seam mining.However,extraction of total thickness at shallow cover caused differential-subsidence and cracks on the surface.These manifestations were immediately tackled to avoid creation of a breathing path for spontaneous heating in the extracted area.展开更多
The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous...The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated.展开更多
In order to solve the large deformation controlling problem for surrounding rock of gob-side entry driving under common cable anchor support in deep mine, site survey, physical modeling experiment, numerical simulatio...In order to solve the large deformation controlling problem for surrounding rock of gob-side entry driving under common cable anchor support in deep mine, site survey, physical modeling experiment, numerical simulation and field measurement were synthetically used to analyze the deformation and failure characteristics of surrounding rock. Besides, applicability analysis, prestress field distribution characteristics of surrounding rock and the control effect on large deformation of surrounding rock were also further studied for the gob-side entry driving in deep mine using the cable-truss supporting system. The results show that, first, compared with no support and traditional bolt anchor support, roof cable-truss system can effectively restrain the initiation and propagation of tensile cracks in the roof surrounding rock and arc shear cracks in the two sides, moreover, the broken development of surrounding rock, roof separation and extrusion deformation between the two sides of the roadway are all controlled; second, a prestressed belt of trapezoidal shape is generated in the surrounding rock by the cable-truss supporting system, and the prestress field range is wide. Especially, the prestress concentration belt in the shallow surrounding rock can greatly improve the anchoring strength and deformation resisting capability of the rock stratum;third, an optimized support system of ‘‘roof and side anchor net beam, roof cable-truss supporting system and anchor cable of the narrow coal pillar" was put forward, and the support optimization design and field industrial test were conducted for the gob-side entry driving of the working face 5302 in Tangkou Mine, from which a good supporting effect was obtained.展开更多
An exact-designed mesh shape with favorable surface accuracy is of practical significance to the performance of large cable-network antenna reflectors. In this study, a novel design approach that could guide the gener...An exact-designed mesh shape with favorable surface accuracy is of practical significance to the performance of large cable-network antenna reflectors. In this study, a novel design approach that could guide the generation of exact spatial parabolic mesh configurations of such reflector was proposed. By incorporating the traditional force density method with the standard finite element method, this proposed approach had taken the deformation effects of flexible ring truss supports into consideration, and searched for the desired mesh shapes that can satisfy the requirement that all the free nodes are exactly located on the objective paraboloid. Compared with the conventional design method,a remarkable improvement of surface accuracy in the obtained mesh shapes had been demonstrated by numerical examples. The present work would provide a helpful technical reference for the mesh shape design of such cable-network antenna reflector in engineering practice.展开更多
Wind loading study on a cable-net supported glass wall is conducted by means of wind tunnel tests. An equiva- lent aeroelastic model is designed and constructed. Response of displacements of the wall is measured and a...Wind loading study on a cable-net supported glass wall is conducted by means of wind tunnel tests. An equiva- lent aeroelastic model is designed and constructed. Response of displacements of the wall is measured and analyzed. In order to design a glass wall under wind loading, the "wind- vibration factor" is estimated and discussed. In fact, the mech- anism of wind acting on the wall is commonly known not only as positive pressure, but also as negative pressure caused by the flow separation on the corners of the building. Due to the diffidence in the mechanism of wind acting, two typi- cal response cases are classified. The results show that the dynamic response of the structure caused by the negative pressure is stronger than that of the positive pressure case. To determine the aerodynamic wind loading on a flexible part of structure on a building, wind tunnel study may be useful and play an important role.展开更多
The truss cable support technology was put forward to control the large mining height and composite mudstone strata roadway. This technique makes the steady rock in roadway slantwise top be anchor points, makes the tr...The truss cable support technology was put forward to control the large mining height and composite mudstone strata roadway. This technique makes the steady rock in roadway slantwise top be anchor points, makes the truss cable be steady support structure through special implement, and supplied rock in anchor area with horizontal and vertical pressure which strengthens the surrounding rock's anti-strain capability, so it can solve the support problem in roadway with the large cross section and large mining height with mudstone strata. The support mechanism of truss cable about how to make the soft strata stabilize is analyzed by use of the mechanical method. Based on the mechanism and numerical simulation method, the truss cable support project was designed and used to the large mining setting room in eleventh mining area of Bailong Mine successfully.展开更多
The bolt support quality of coal roadways is one of the important factors for the efficiency and security of coal production. By means of a self-developed technique and equipment of random non-destructive testing, non...The bolt support quality of coal roadways is one of the important factors for the efficiency and security of coal production. By means of a self-developed technique and equipment of random non-destructive testing, non-destructive detection and pre-warning analysis on the quality of bolt support in deep roadways of mining districts were performed in a number of mining areas. The measured data were obtained in the detection instances of abnormal in-situ stress and support invalidation etc. The corresponding relation between axial bolt load variation and roadway surrounding rock deformation and stability was summarized in different mining service stages. Pre-warning technology of roadway surrounding rock stability is proposed based on the detection of axial bolt load. Meanwhile, pre-warning indicators of axial bolt load in different mining service stages are offered and some successful pre-warning cases are also illustrated.The research results show that the change rules of axial bolt load in different mining service stages are quite similar in different mining areas. The change of axial bolt load is in accord with the adjustment of surrounding rock stress, which can consequently reflect the deformation and stability state of roadway surrounding rock. Through the detection of axial bolt load in different sections of roadways, the status of real-time bolt support quality can be reflected; meanwhile, the rationality of bolt support design can be evaluated which provides reference for bolting parameters optimization.展开更多
By applying experimental method, the bolt stress and supporting mechanism is studied during the deformation process of a rock mass containing a weak interlayer. The force measuring bolt is installed manually and instr...By applying experimental method, the bolt stress and supporting mechanism is studied during the deformation process of a rock mass containing a weak interlayer. The force measuring bolt is installed manually and instrumented five pairs of symmetrical strain gauges. The experimental results show that the fully grouted bolt suffers tensile, compressive, bending and shear stress at the same time. The bolt stress evolution is closely related to the deformation stages of the rock mass which are very gradually varying stage, gradually varying stage at the pre-peak and suddenly varying stage at the post peak stage.The axial compressive stress in the bolt is mainly induced by the moment. Thus, in most cases the axial compressive stress is distributed on one side of the bolt. For axial stresses, induced by the axial force and the bending moment at the post-peak stage, three types of changing are observed, viz. increasingincreasing type, decreasing-increasing type and increasing-decreasing type. The stress characteristics of the bolt section in the weak interlayer are significantly different from those in the hard rock. The failure models of the anchored bolt are tensile failure and shear failure, respectively. The bolt not only provides constraints on the free surface of the rock mass, but also resists the axial and lateral loading by the bending moment. This study provides valuable guidelines for bolting support design and its safety assessment.展开更多
A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large d...A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large deformation(CRLD) bolt, has recently been developed to counteract soft rock swelling that often occurs during deep mining. In order to further study the mechanical properties of the CRLD bolt, we investigated its mechanical properties by comparison with the conventional strength bolt(rebar) using static pull tests on many aspects, including supporting capacity, elongation, radial deformation, and energy absorption. The tests verified that the mechanical defects of the rebar, which include the decrease of bolt diameter, reduction of supporting capacity, and emergence and evolution of fracture until failure during the whole pull process, were caused by the Poisson's ratio effect. Due to the special structure set on the CRLD bolt, the bolt presents a seemingly unusual phenomenon of the negative Poisson's ratio effect, i.e., the diameter of the constant resistance structure increases while under-pulling. It is the very effect that ensures the extraordinary mechanical properties, including high resistance, large elongation, and strong energy absorption. According to the comparison and analysis of numerical simulation and field test, we can conclude that the CRLD bolt works better than the rebar bolt.展开更多
The cable net supported glass curtain wallas the most advanced technique in dot point supported glass curtain wall, is widely used in China. Because of its large deflection and high nonlinearity under wind load, the d...The cable net supported glass curtain wallas the most advanced technique in dot point supported glass curtain wall, is widely used in China. Because of its large deflection and high nonlinearity under wind load, the dynamic performance of the cable net is greatly different from that of the conventional linear structures. The continuous membrane theory is used to construct the nonlinear vibration differential equation of the cable net, and the harmonic balance method is used to solve the analytic formula of the nonlinear frequency. In order to verify the accuracy of the above analytic formula, the results of the formula and the nonlinear FEM time-history method are compared and found to be in good agreement. Furthermore, the nonlinear vibration differential equation and the nonlinear frequency obtained in this paper are the basis for the wind-induced response analysis of a cable net under fluctuating wind load.展开更多
基金financial support from the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK0708)the National Natural Science Foundation of China(No.41941018)the Special Fund of Yueqi Scholars(No.800015Z1207).
文摘The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric deformation modes in layered soft rock tunnels with large deformations.Subsequently,we construct a mechanical model under ideal conditions for controlling the roof of layered soft rock tunnels through high preload with the support of NPR anchor cables.The prominent roles of long and short NPR anchor cables in the support system are also analyzed.The results indicate the significance of high preload in controlling the roof of layered soft rock tunnels.The short NPR anchor cables effectively improve the integrity of the stratified soft rock layers,while the long NPR anchor cables effectively mobilize the self-bearing capacity of deep-stable rock layers.Finally,the high-preload support method with NPR anchor cables is validated to have a good effect on controlling large deformations in layered soft rock tunnels through field monitoring data.
基金funding support from the National Natural Science Foundation of China(NSFC)(Grant Nos.41941018 and 52304111)the Program of China Scholarship Council(Grant No.202206430007).
文摘To overcome large deformation of deep phosphate rock roadways and pillar damage,a new type of constant-resistance large-deformation negative Poisson’s ratio(NPR)bolt that can withstand a high prestress of at least 130 KN was developed.In the conducted tests,the amount of deformation was 200-2000 mm,the breaking force reached 350 KN,and a high constant-resistance pre-stress was maintained during the deformation process.A stress compensation theory of phosphate rock excavation based on NPR bolts is proposed together with a balance system for bolt compensation of the time-space effect and high NPR pre-stress.Traditional split-set rock bolts are unable to maintain the stability of roadway roofs and pillars.To verify the support effect of the proposed bolt,field tests were conducted using both the proposed NPR bolts and split-set rock bolts as support systems on the same mining face.In addition,the stress compensation mechanism of roadway mining was simulated using the particle flow code in three dimensions(PFC^(3D))-fast Lagrangian analysis of continua(FLAC^(3D))particle-flow coupling numerical model.On-site monitoring and numerical simulations showed that the NPR excavation compensation support scheme effectively improves the stress state of the bolts and reduces the deformation of the surrounding rock.Compared to the original support scheme,the final deformation of the surrounding rock was reduced by approximately 70%.These results significantly contribute to domestic and foreign research on phosphate-rock NPR compensation support technology,theoretical systems,and engineering practices,and further promote technological innovation in the phosphate rock mining industry.
文摘The designing method and the supporting mechanism of both bolt and small cable anchor for full seam roadway in the weaker thick coal seam are systematically analyzed, and the construction technology and the supporting results are briefly summarized.
文摘Designing reliable yielding support system to mitigate the effect of the kinetic energy in burst-prone conditions in mining and tunneling excavations is one of the challenges for geotechnical engineers. A combination of the support elements can be used to increase rock strength and minimise the displacement of unstable rock mass. It is important to understand how the support system works to ensure the stability of underground excavations. Cable bolts have been commonly used as an effective underground support system and an element of reinforcement to improve rock stability. Cable bolts are usually considered to be subjected to static loads under relatively low stress environments, however, in burst-prone conditions, they might be subjected to dynamic loads. Cable bolts as well as other support elements are used in burst-prone conditions to absorb the kinetic energy of the removed rock to avoid sudden and violent failures. This paper develops numerical and a novel analytical simulation technique for cable bolts to assess their structural behaviour under static and dynamic loading conditions. The numerical and analytical models are then validated against experimental observations reported in the literature, which demonstrates the reliability of the proposed models.
文摘An experimental device was designed for studying methane explosion ignited by sparks of cable bolt breakage. With the methane concentration being in explosion range, a series of experiments were conducted to study the law of spark generation during cable bolt breakage and the probability of methane explosion caused by the spark. The results show that the probability of generating sparks during cable bolt breakage is 50%. The spark generated by the breakage of steel cable bolt strand can't ignite a methane explosion. A detection was carried out using infrared-ray imaging apparatus (IRIA) to measure temperature of the spark generated by cable bolt breakage. It is indicated that the maximum temperature of the spark generated by cable bolt breakage is far less than the required ignition temperature for a methane explosion.
基金funding provided by the Australian Research Council(ARC)Linkage Projects(Nos.100200238 and 140100153)supported by Jennmar Australia Pty Ltd+5 种基金Glencore Australia Holdings Pty LtdIllawarra Coal Holdings Pty LtdSpringvale Coal Pty LtdAnglo Operations Pty LtdAnglo Coal AustraliaNarrabri Coal Operations Pty Ltd。
文摘Reports on corrosion failure of cable bolts,used in mining and civil industries,have been increasing in the past two decades.The previous studies found that pitting corrosion on the surface of a cable bolt can initiate premature failure of the bolt.In this study,the role of Acidithiobacillus ferrooxidans(A.ferrooxidans)bacterium in the occurrence of pitting corrosion in cable bolts was studied.Stressed coupons,made from the wires of cable bolts,were immersed in testing bottles containing groundwater collected from an underground coal mine and a mixture of A.ferrooxidans and geomaterials.It was observed that A.ferrooxidans caused pitting corrosion on the surface of cable bolts in the near-neutral environment.The presence of geomaterials slightly affected the p H of the environment;however,it did not have any significant influence on the corrosion activity of A.ferrooxidans.This study suggests that the common bacterium A.ferrooxidans found in many underground environments can be a threat to cable bolts'integrity by creating initiation points for other catastrophic failures such as stress corrosion cracking.
基金funded by the National Natural Science Foundation of China(52174096,42277174)the Fundamental Research Funds for the Central Universities(2022YJSSB03)the Scientific and Technological Projects of Henan Province(232102320238)。
文摘The Gaoloushan Tunnel in Longnan City,Gansu Province,China,frequently experiences rockburst disasters due to high in-situ stress.Managing rockburst in deep-buried tunnels remains a challenging issue.This paper employs RFPA(Rock Failure Process Analysis)software to establish a calculation model of constant resistance and large deformation(CRLD)anchorages and analyzes the effects of different support methods and pre-stress levels on rockburst.We simulate the process of tunnel rockburst disasters and find that ordinary anchor support incurs rockburst on the right arch waist and arch top,forming a V-shaped explosion pit.CRLD anchor support has several advantages in rockburst control,such as more uniform stress distribution in the surrounding rock,a uniform distribution of plastic zones,less noticeable damage to the tunnel,and effective control of the arch top displacement.The effectiveness of the CRLD anchor support under varying pre-stress conditions shows that a higher prestress results in a smaller plastic zone of the surrounding rock and arch top displacement and a lower number of acoustic emission signals,which better explains the excavation compensation effect.Moreover,adding long anchorages in the deep surrounding rock area can better control rockburst and reduce surrounding rock deformation.Based on these findings,we propose a comprehensive control system that combines long and short anchorages and provides the optimal scheme based on calculations.Therefore,by using high-prestress CRLD anchor support and the combination of long and short anchorages at critical positions,we can enhance the integrity of the surrounding rock,effectively absorb the energy released by the surrounding rock deformation,and reduce the incidence of rockburst disasters.
文摘In order to solve the problem of surrounding rock control in soft coal seam roadway, taking the centralized return airway of No. 2 coal seam in Liangdu Coal Industry as the research background, the mechanical conditions of roadway surrounding rock were analyzed by means of field investigation, rock mechanics experiment and numerical simulation. The design principles of roadway support in soft coal seam were put forward: high strength anchor cable support, high preload support and high stiffness support. The bearing capacity of surrounding rock was strengthened by anchor cable support, and the deformation and failure of surrounding rock were effectively controlled. Through the numerical simulation method, the deformation and plastic failure range of roadwaysunder different support schemes are compared and analyzed. The support scheme of centralized transportation roadway is studied and determined, and the field test is carried out, which effectively controls the deformation of surrounding rock of roadway in weak coal seam.
基金Supported by the National Natural Science Foundation of China (50074030) and Dr. Special fund of the Ministry of Education (20030290017)
文摘With the enlarge of cross section of roadway, the radius of plastic area and broken area increase, and the tensile stress and shear stress distributing in roof coal-rock layers relevantly increase, which induce support effect not obvious for ordinary bolt(cable). While bounding point and support structure of the truss cable is in vertex angle of roadway, and supplies coal-rock layers in bounding area with the horizontal and vertical pressure, so it settles the support problems in large cross section coal roadway. From the point of view of mechanics, gave emphasis on the invalid mechanics of ordinary bolt (cable) in large cross section coal roadway and supported mechanics of prestress truss cable. The author successfully used this technique in Wuyang Mine, and had the huge economic efficiency and the social benefit.
文摘This paper presents a semi-active strategy for seismic protection of a benchmark cable-stayed bridge with consideration of multiple-support excitations. In this control strategy, Magnetorheological (MR) dampers are proposed as control devices, a LQG-clipped-optimal control algorithm is employed. An active control strategy, shown in previous researches to perform well at controlling the benchmark bridge when uniform earthquake motion was assumed, is also used in this study to control this benchmark bridge with consideration of multiple-support excitations. The performance of active control system is compared to that of the presented semi-active control strategy. Because the MR fluid damper is a con-trollable energy- dissipation device that cannot add mechanical energy to the structural system, the proposed control strategy is fail-safe in that bounded-input, bounded-output stability of the controlled structure is guaranteed. The numerical results demonstrated that the performance of the presented control design is nearly the same as that of the active control system; and that the MR dampers can effectively be used to control seismically excited cable-stayed bridges with multiple-support excitations.
基金sponsored by the general manager,Kajora Area of Eastern Coalfield Limited(ECL).Co-operation of general manager of the Area,project officer,Madhusudanpur 7 Pit and Incline Colliery,manager and safety officer,Madhusudanpur 7 Pit and Incline Colliery in conducting this study is thankfully acknowledged
文摘Explaining fundamentals of application of cable bolting for a thick seam depillaring,this paper summarizes the results of field studies conducted during adoption of this approach in more than fifteen panels of Madhusudanpur 7 pit and incline mine.Nearly 7.0 m thick Kajora top coal seam of this mine is developed on pillars along the floor horizon to an average height of 3.0 m,leaving a coal band of around 4.0 m along the roof.Analysis of procured core samples showed that roof strata are easily caveable with a caveability index value of around 2000 only.Easily caveable overlying strata and shallow depth of cover alleviated most of the expected strata mechanics problems of the thick seam mining.However,extraction of total thickness at shallow cover caused differential-subsidence and cracks on the surface.These manifestations were immediately tackled to avoid creation of a breathing path for spontaneous heating in the extracted area.
基金the National Natural Science Foundation of China(Nos.52304141 and 52074154)。
文摘The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated.
基金provided by the National Basic Research 973 Program of China (No. 2013CB036003)the National Natural Science Foundation of China (No. 51374198)the Annual College Graduate Research and Innovation Projects of Jiangsu Province of China (No. KYLX15_1402)
文摘In order to solve the large deformation controlling problem for surrounding rock of gob-side entry driving under common cable anchor support in deep mine, site survey, physical modeling experiment, numerical simulation and field measurement were synthetically used to analyze the deformation and failure characteristics of surrounding rock. Besides, applicability analysis, prestress field distribution characteristics of surrounding rock and the control effect on large deformation of surrounding rock were also further studied for the gob-side entry driving in deep mine using the cable-truss supporting system. The results show that, first, compared with no support and traditional bolt anchor support, roof cable-truss system can effectively restrain the initiation and propagation of tensile cracks in the roof surrounding rock and arc shear cracks in the two sides, moreover, the broken development of surrounding rock, roof separation and extrusion deformation between the two sides of the roadway are all controlled; second, a prestressed belt of trapezoidal shape is generated in the surrounding rock by the cable-truss supporting system, and the prestress field range is wide. Especially, the prestress concentration belt in the shallow surrounding rock can greatly improve the anchoring strength and deformation resisting capability of the rock stratum;third, an optimized support system of ‘‘roof and side anchor net beam, roof cable-truss supporting system and anchor cable of the narrow coal pillar" was put forward, and the support optimization design and field industrial test were conducted for the gob-side entry driving of the working face 5302 in Tangkou Mine, from which a good supporting effect was obtained.
文摘An exact-designed mesh shape with favorable surface accuracy is of practical significance to the performance of large cable-network antenna reflectors. In this study, a novel design approach that could guide the generation of exact spatial parabolic mesh configurations of such reflector was proposed. By incorporating the traditional force density method with the standard finite element method, this proposed approach had taken the deformation effects of flexible ring truss supports into consideration, and searched for the desired mesh shapes that can satisfy the requirement that all the free nodes are exactly located on the objective paraboloid. Compared with the conventional design method,a remarkable improvement of surface accuracy in the obtained mesh shapes had been demonstrated by numerical examples. The present work would provide a helpful technical reference for the mesh shape design of such cable-network antenna reflector in engineering practice.
文摘Wind loading study on a cable-net supported glass wall is conducted by means of wind tunnel tests. An equiva- lent aeroelastic model is designed and constructed. Response of displacements of the wall is measured and analyzed. In order to design a glass wall under wind loading, the "wind- vibration factor" is estimated and discussed. In fact, the mech- anism of wind acting on the wall is commonly known not only as positive pressure, but also as negative pressure caused by the flow separation on the corners of the building. Due to the diffidence in the mechanism of wind acting, two typi- cal response cases are classified. The results show that the dynamic response of the structure caused by the negative pressure is stronger than that of the positive pressure case. To determine the aerodynamic wind loading on a flexible part of structure on a building, wind tunnel study may be useful and play an important role.
文摘The truss cable support technology was put forward to control the large mining height and composite mudstone strata roadway. This technique makes the steady rock in roadway slantwise top be anchor points, makes the truss cable be steady support structure through special implement, and supplied rock in anchor area with horizontal and vertical pressure which strengthens the surrounding rock's anti-strain capability, so it can solve the support problem in roadway with the large cross section and large mining height with mudstone strata. The support mechanism of truss cable about how to make the soft strata stabilize is analyzed by use of the mechanical method. Based on the mechanism and numerical simulation method, the truss cable support project was designed and used to the large mining setting room in eleventh mining area of Bailong Mine successfully.
基金the State Key Research Development Program of China(No.2016YFC0600705)the Fundamental Research Funds for the Central Universities(No.2015XKZD06)+1 种基金the National Natural Science Foundation of China(Nos.51227003,51404250,51504243,51474215,51404262 and 51323004)the Natural Science Foundation of Jiangsu Province,China(Nos.BK20150191 and BK20140213)
文摘The bolt support quality of coal roadways is one of the important factors for the efficiency and security of coal production. By means of a self-developed technique and equipment of random non-destructive testing, non-destructive detection and pre-warning analysis on the quality of bolt support in deep roadways of mining districts were performed in a number of mining areas. The measured data were obtained in the detection instances of abnormal in-situ stress and support invalidation etc. The corresponding relation between axial bolt load variation and roadway surrounding rock deformation and stability was summarized in different mining service stages. Pre-warning technology of roadway surrounding rock stability is proposed based on the detection of axial bolt load. Meanwhile, pre-warning indicators of axial bolt load in different mining service stages are offered and some successful pre-warning cases are also illustrated.The research results show that the change rules of axial bolt load in different mining service stages are quite similar in different mining areas. The change of axial bolt load is in accord with the adjustment of surrounding rock stress, which can consequently reflect the deformation and stability state of roadway surrounding rock. Through the detection of axial bolt load in different sections of roadways, the status of real-time bolt support quality can be reflected; meanwhile, the rationality of bolt support design can be evaluated which provides reference for bolting parameters optimization.
基金support of the National Basic Research 973 Program of China (No.2013CB036003)the National Natural Science Foundation of China (No.51374198)the National Natural Science Foundation young investigator grant program of China (Nos.51204163,51504247,and 51404255)
文摘By applying experimental method, the bolt stress and supporting mechanism is studied during the deformation process of a rock mass containing a weak interlayer. The force measuring bolt is installed manually and instrumented five pairs of symmetrical strain gauges. The experimental results show that the fully grouted bolt suffers tensile, compressive, bending and shear stress at the same time. The bolt stress evolution is closely related to the deformation stages of the rock mass which are very gradually varying stage, gradually varying stage at the pre-peak and suddenly varying stage at the post peak stage.The axial compressive stress in the bolt is mainly induced by the moment. Thus, in most cases the axial compressive stress is distributed on one side of the bolt. For axial stresses, induced by the axial force and the bending moment at the post-peak stage, three types of changing are observed, viz. increasingincreasing type, decreasing-increasing type and increasing-decreasing type. The stress characteristics of the bolt section in the weak interlayer are significantly different from those in the hard rock. The failure models of the anchored bolt are tensile failure and shear failure, respectively. The bolt not only provides constraints on the free surface of the rock mass, but also resists the axial and lateral loading by the bending moment. This study provides valuable guidelines for bolting support design and its safety assessment.
基金supported by National Key Research and Development Program(2016YFC0600901)the National Natural Science Foundation of China(Grant Nos.51374214,51134005 and 51574248)+1 种基金the Special Fund of Basic Research and Operating of China University of Mining&Technology,Beijing(Grant Nos.2009QL03)the State Scholarship Fund of China
文摘A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large deformation(CRLD) bolt, has recently been developed to counteract soft rock swelling that often occurs during deep mining. In order to further study the mechanical properties of the CRLD bolt, we investigated its mechanical properties by comparison with the conventional strength bolt(rebar) using static pull tests on many aspects, including supporting capacity, elongation, radial deformation, and energy absorption. The tests verified that the mechanical defects of the rebar, which include the decrease of bolt diameter, reduction of supporting capacity, and emergence and evolution of fracture until failure during the whole pull process, were caused by the Poisson's ratio effect. Due to the special structure set on the CRLD bolt, the bolt presents a seemingly unusual phenomenon of the negative Poisson's ratio effect, i.e., the diameter of the constant resistance structure increases while under-pulling. It is the very effect that ensures the extraordinary mechanical properties, including high resistance, large elongation, and strong energy absorption. According to the comparison and analysis of numerical simulation and field test, we can conclude that the CRLD bolt works better than the rebar bolt.
基金Project supported by the National Natural Sciences Foundation of China (No. 50478028).
文摘The cable net supported glass curtain wallas the most advanced technique in dot point supported glass curtain wall, is widely used in China. Because of its large deflection and high nonlinearity under wind load, the dynamic performance of the cable net is greatly different from that of the conventional linear structures. The continuous membrane theory is used to construct the nonlinear vibration differential equation of the cable net, and the harmonic balance method is used to solve the analytic formula of the nonlinear frequency. In order to verify the accuracy of the above analytic formula, the results of the formula and the nonlinear FEM time-history method are compared and found to be in good agreement. Furthermore, the nonlinear vibration differential equation and the nonlinear frequency obtained in this paper are the basis for the wind-induced response analysis of a cable net under fluctuating wind load.