期刊文献+
共找到1,198篇文章
< 1 2 60 >
每页显示 20 50 100
Failure characterization of fully grouted rock bolts under triaxial testing
1
作者 Hadi Nourizadeh Ali Mirzaghorbanali +3 位作者 Mehdi Serati Elamin Mutaz Kevin McDougall Naj Aziz 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期778-789,共12页
Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic st... Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism. 展开更多
关键词 Rock bolts bolt-grout interface Bond strength Push test Triaxial tests
下载PDF
Laboratory pull-out tests on fully grouted rock bolts and cable bolts:Results and lessons learned 被引量:18
2
作者 Isabelle Thenevin Laura Blanco-Martín +3 位作者 Faouzi Hadj-Hassen Jacques Schleifer Zbigniew Lubosik Aleksander Wrana 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第5期843-855,共13页
Laboratory pull-out tests were conducted on the following rock bolts and cable bolts:steel rebars,smooth steel bars,fiberglass reinforced polymer threaded bolts,flexible cable bolts,IR5/IN special cable bolts and Mini... Laboratory pull-out tests were conducted on the following rock bolts and cable bolts:steel rebars,smooth steel bars,fiberglass reinforced polymer threaded bolts,flexible cable bolts,IR5/IN special cable bolts and Mini-cage cable bolts.The diameter of the tested bolts was between 16 mm and 26 mm.The bolts were grouted in a sandstone sample using resin or cement grouts.The tests were conducted under either constant radial stiffness or constant confining pressure boundary conditions applied on the outer surface of the rock sample.In most tests,the rate of displacement was about 0.02 mm/s.The tests were performed using a pull-out bench that allows testing a wide range of parameters.This paper provides an extensive database of laboratory pull-out test results and confirms the influence of the confining pressure and the embedment length on the pull-out response(rock bolts and cable bolts).It also highlights the sensitivity of the results to the operating conditions and to the behavior of the sample as a whole,which cannot be neglected when the test results are used to assess the bolt-grout or the grouterock interface. 展开更多
关键词 pull-out test Fully grouted bolts Laboratory-scale Confining pressure Embedment length bolt-grout interface
下载PDF
State-of-the-art on the anchorage performance of rock bolts subjected to shear load
3
作者 Yu Chen Haodong Xiao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期1-30,共30页
Rock bolts are extensively utilized in underground engineering as a means of offering support and stability to rock masses in tunnels,mines,and other underground structures.In environments of high ground stress,faults... Rock bolts are extensively utilized in underground engineering as a means of offering support and stability to rock masses in tunnels,mines,and other underground structures.In environments of high ground stress,faults or weak zones can frequently arise in rock formations,presenting a significant challenge for engineering and potentially leading to underground engineering collapse.Rock bolts serve as a crucial structural element for the transmission of tensile stress and are capable of withstanding shear loads to prevent sliding of weak zones within rock mass.Therefore,a complete understanding of the behavior of rock bolts subjected to shear loads is essential.This paper presents a state-of-the-art review of the research progress of rock bolts subjected to shear load in three categories:experiment,numerical simulation,and analytical model.The review focuses on the research studies and developments in this area since the 1970s,providing a comprehensive overview of numerous factors that influence the anchorage performance of rock bolts.These factors include the diameter and angle of the rock bolt installation,rock strength,grouting material,bolt material,borehole diameter,rock bolt preload,normal stress,joint surface roughness and joint expansion angle.The paper reviews the improvement of mechanical parameter setting in numerical simulation of rock bolt shear.Furthermore,it delves into the optimization of the analytical model concerning rock bolt shear theory,approached from the perspectives of both Elastic foundation beam theory coupled with Elastoplasticity theory and Structural mechanic methods.The significance of this review lies in its ability to provide insights into the mechanical behavior of rock bolts.The paper also highlights the limitations of current research and guidelines for further research of rock bolts. 展开更多
关键词 Rock bolt Shear load Shear test Numerical simulation Analytical model
下载PDF
Non-destructive testing and pre-warning analysis on the quality of bolt support in deep roadways of mining districts 被引量:13
4
作者 Zhang Houquan Miao Xiexing +2 位作者 Zhang Guimin Wu Yu Chen Yanlong 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第6期989-998,共10页
The bolt support quality of coal roadways is one of the important factors for the efficiency and security of coal production. By means of a self-developed technique and equipment of random non-destructive testing, non... The bolt support quality of coal roadways is one of the important factors for the efficiency and security of coal production. By means of a self-developed technique and equipment of random non-destructive testing, non-destructive detection and pre-warning analysis on the quality of bolt support in deep roadways of mining districts were performed in a number of mining areas. The measured data were obtained in the detection instances of abnormal in-situ stress and support invalidation etc. The corresponding relation between axial bolt load variation and roadway surrounding rock deformation and stability was summarized in different mining service stages. Pre-warning technology of roadway surrounding rock stability is proposed based on the detection of axial bolt load. Meanwhile, pre-warning indicators of axial bolt load in different mining service stages are offered and some successful pre-warning cases are also illustrated.The research results show that the change rules of axial bolt load in different mining service stages are quite similar in different mining areas. The change of axial bolt load is in accord with the adjustment of surrounding rock stress, which can consequently reflect the deformation and stability state of roadway surrounding rock. Through the detection of axial bolt load in different sections of roadways, the status of real-time bolt support quality can be reflected; meanwhile, the rationality of bolt support design can be evaluated which provides reference for bolting parameters optimization. 展开更多
关键词 Deep roadways bolt support QUALITY RANDOM NONDESTRUCTIVE testing SURROUNDING ROCK stability Prediction and pre-warning
下载PDF
Mechanical properties and supporting effect of CRLD bolts under static pull test conditions 被引量:9
5
作者 Xiao-ming Sun Yong Zhang +3 位作者 Dong Wang Jun Yang Hui-chen Xu Man-chao He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第1期1-9,共9页
A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large d... A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large deformation(CRLD) bolt, has recently been developed to counteract soft rock swelling that often occurs during deep mining. In order to further study the mechanical properties of the CRLD bolt, we investigated its mechanical properties by comparison with the conventional strength bolt(rebar) using static pull tests on many aspects, including supporting capacity, elongation, radial deformation, and energy absorption. The tests verified that the mechanical defects of the rebar, which include the decrease of bolt diameter, reduction of supporting capacity, and emergence and evolution of fracture until failure during the whole pull process, were caused by the Poisson's ratio effect. Due to the special structure set on the CRLD bolt, the bolt presents a seemingly unusual phenomenon of the negative Poisson's ratio effect, i.e., the diameter of the constant resistance structure increases while under-pulling. It is the very effect that ensures the extraordinary mechanical properties, including high resistance, large elongation, and strong energy absorption. According to the comparison and analysis of numerical simulation and field test, we can conclude that the CRLD bolt works better than the rebar bolt. 展开更多
关键词 deep mining boltS mechanical properties rock support static pull test
下载PDF
Loading characteristics of mechanical rib bolts determined through testing and numerical modeling 被引量:5
6
作者 Khaled Mohamed Gamal Rashed Zorica Radakovic-Guzina 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第1期17-24,共8页
Underground coal mines use mechanical bolts in addition to other types of bolts to control the rib deformation and to stabilize the yielded coal ribs.Limited research has been conducted to understand the performance o... Underground coal mines use mechanical bolts in addition to other types of bolts to control the rib deformation and to stabilize the yielded coal ribs.Limited research has been conducted to understand the performance of the mechanical bolts in coal ribs.Researchers from the National Institute for Occupational Safety and Health(NIOSH)conducted this work to understand the loading characteristics of mechanical bolts(stiffness and capacity)installed in coal ribs at five underground coal mines.Standard pull-out tests were performed in this study to define the loading characteristics of mechanical rib bolts.Different installation torques were applied to the tested bolts based on the strength of the coal seam.A typical tri-linear load-deformation response for mechanical bolts was obtained from these tests.It was found that the anchorage capacity depended mainly on the coal strength.Guidelines for modeling mechanical bolts have been developed using the tri-linear load-deformation response.The outcome of this research provides essential data for rib support design. 展开更多
关键词 Coal RIB MECHANICAL bolt Conventional bolt Tension bolt Point-anchored bolt RIB support pull-out test Numerical modeling FLAC3D
下载PDF
Effects of different pull-out loading rates on mechanical behaviors and acoustic emission responses of fully grouted bolts 被引量:4
7
作者 DU Yun-lou FENG Guo-rui +2 位作者 KANG Hong-pu ZHANG Yu-jiang ZHANG Xi-hong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第7期2052-2066,共15页
Due to the influence of mining disturbance stress,it is of great significance to better understand the bearing characteristics of fully grouted bolts under different pull-out loading rates.For this purpose,a series of... Due to the influence of mining disturbance stress,it is of great significance to better understand the bearing characteristics of fully grouted bolts under different pull-out loading rates.For this purpose,a series of laboratory pull-out tests were conducted to comprehensively investigate the effects of different pull-out loading rates on the mechanical performance and failure characteristics of fully grouted bolts.The results show that the mechanical performance of the anchored specimen presents obvious loading rate dependence and shear enhancement characteristics.With the increase of the pull-out loading rates,the maximum pull-out load increases,the displacement and time corresponding to the maximum pull-out load decrease.The accumulated acoustic emission(AE)counts,AE energy and AE events all decrease with the increase of the pull-out loading rates.The AE peak frequency has obvious divisional distribution characteristics and the amplitude is mainly distributed between 50-80 dB.With the increase of the pull-out loading rates,the local strain of the anchoring interface increases and the failure of the anchoring interface transfers to the interior of the resin grout.The accumulated AE counts are used to evaluate the damage parameter of the anchoring interface during the whole pull-out process.The analytical results are in good agreement with the experimental results.The research results may provide guidance for the support design and performance monitoring of fully grouted bolts. 展开更多
关键词 fully grouted bolts pull-out test loading rate mechanical behavior AE response failure characteristic
下载PDF
Pull-out tests and slope stability analyses of nailing systems comprising single and multi rebars with grouted cement 被引量:6
8
作者 Sang-Soo Jeon 《Journal of Central South University》 SCIE EI CAS 2012年第1期262-272,共11页
The pull-out capacities for soil nailing systems comprising of one single 29 mm diameter(type A) and four 16 mm diameter(type B) rebars with grouted cement were examined.A field test and numerical analysis for the typ... The pull-out capacities for soil nailing systems comprising of one single 29 mm diameter(type A) and four 16 mm diameter(type B) rebars with grouted cement were examined.A field test and numerical analysis for the type A and type B systems were carried out to investigate the pull-out capacities and the slope stability reinforcement efficiency in soil and rock slopes.The results of the pull-out tests show the mobilized shear force and load transfer characteristics with respect to soil depth.The load-displacement relationship was examined for both type A and type B systems.Slope stability analyses were carried out to study the relationships between soil and nail reinforcement and bending stiffness as well as combined axial tension and shear forces.Factors of safety were calculated in relation to the number of nails and their outside diameters.Both soil and rock slopes were included in this evaluation. 展开更多
关键词 soil nailing bending resistance pull-out test finite difference method
下载PDF
MMM testing and failure analysis of fastening bolts on reciprocating compressor cylinder cover 被引量:3
9
作者 邢海燕 樊久铭 +1 位作者 徐敏强 李其 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第2期13-16,共4页
To avoid the serious accidents caused by the failure fastening bolts on reciprocating compressor cylinder cover,a new nondestructive testing(NDT) technology,metal magnetic memory(MMM) testing,was applied to safety eva... To avoid the serious accidents caused by the failure fastening bolts on reciprocating compressor cylinder cover,a new nondestructive testing(NDT) technology,metal magnetic memory(MMM) testing,was applied to safety evaluating and failure analyzing for the fastening bolts.Based on the dynamic stress calculation of the failure bolts,MMM testing was carried out at workshop.Given are the MMM stress distribution characteristics of the failure bolts and fracture faces.It has been found that the MMM signal variation amplitude of the crack transition zone in the fracture surface is minimal,that of the crack initiation zone is in the middle,and that of the tear fracture zone is maximal.The failure reasons were analyzed with MMM effect.The results of the metallographic examination showed that the validity and feasibility of MMM testing and failure analysis.This means MMM technology is a new,fast and validity method of failure analysis. 展开更多
关键词 metal magnetic memory testing fastening bolts failure analysis stress calculation
下载PDF
Geomechanics model test and numerical simulation of 2G-NPR bolt support effect in an active fault tunnel 被引量:2
10
作者 REN Shu-lin HE Man-chao +2 位作者 LIN Wei-jun ZHANG Teng-wu TAO Zhi-gang 《Journal of Mountain Science》 SCIE CSCD 2022年第9期2729-2741,共13页
Active faults are a common adverse geological phenomenon that can occur during tunnel excavation and has a very negative impact on the construction and operation of the tunnel.In this paper,the grade IV rock surroundi... Active faults are a common adverse geological phenomenon that can occur during tunnel excavation and has a very negative impact on the construction and operation of the tunnel.In this paper,the grade IV rock surrounding the cross-fault tunnel with poor geological conditions has been chosen for the study.The support capacity of 2^(nd) Generation-Negative Poisson’s Ratio(2G-NPR)bolt in an active fault tunnel has been carried out on the basis of relevant results obtained from the geomechanical model test and numerical investigations of failure model for existing unsupported fault tunnel.The investigation shows that surrounding rock of the tunnel is prone to shear deformation and crack formation along the fault,as a result,the rock mass on the upper part of the fault slips as a whole.Furthermore,small-scale deformation and loss of blocks are observed around the tunnel;however,the 2G-NPR bolt support is found to be helpful in keeping the overall tunnel intact without any damage and instability.Due to the blocking effect of fault,the stress of the surrounding rock on the upper and lower parts of the fault is significantly different,and the stress at the left shoulder of the tunnel is greater than that at the right shoulder.The asymmetrical arrangement of 2G-NPR bolts can effectively control the asymmetric deformation and instability of the surrounding rock.The present numerical scheme is in good agreement with the model test results,and can reasonably reflect the stress and displacement characteristics of the surrounding rock of the tunnel.In comparison to unsupported and ordinary PR(Poisson’s Ratio)bolt support,2G-NPR bolt can effectively limit the fault slip and control the stability of the surrounding rock of the fault tunnel.The research findings may serve as a guideline for the use of 2G-NPR bolts in fault tunnel support engineering. 展开更多
关键词 Tunnel engineering Fault 2G-NPR bolt Geomechanics model test Numerical simulation
下载PDF
A hardening load transfer function for rock bolts and its calibration using distributed fiber optic sensing 被引量:3
11
作者 Assaf Klar Ori Nissim Itai Elkayam 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期2816-2830,共15页
Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most o... Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most of which are based on the global rock bolt response evaluated in pull-out tests.This paper presents a laboratory experimental setup aiming to capture the rock formation effect,while using distributed fiber optic sensing to quantify the effect of the confinement and the reinforcement pull-out behavior on a more local level.It is shown that the behavior along the sample itself varies,with certain points exhibiting stress drops with crack formation.Some edge effects related to the kinematic freedom of the grout to dilate are also observed.Regardless,it was found that the mid-level response is quite similar to the average response along the sample.The ability to characterize the variation of the response along the sample is one of the many advantages high-resolution fiber optic sensing allows in such investigations.The paper also offers a plasticity-based hardening load transfer function,representing a"slice"of the anchor.The paper describes in detail the development of the model and the calibration/determination of its parameters.The suggested model captures well the coupled behavior in which the pull-out process leads to an increase in the confining stress due to dilative behavior. 展开更多
关键词 Rock bolts Distributed fiber optic sensing pull-out tests Load transfer function Hardening model
下载PDF
Experimental study on the shear performance of quasi-NPR steel bolted rock joints 被引量:4
12
作者 Manchao He Shulin Ren +3 位作者 Haotian Xu Senlin Luo Zhigang Tao Chun Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第2期350-362,共13页
Quasi-NPR(negative Poisson’s ratio)steel is a new type of super bolt material with high strength,high ductility,and a micro-negative Poisson’s effect.This material overcomes the contrasting characteristics of the hi... Quasi-NPR(negative Poisson’s ratio)steel is a new type of super bolt material with high strength,high ductility,and a micro-negative Poisson’s effect.This material overcomes the contrasting characteristics of the high strength and high ductility of steel and it has significant energy-absorbing characteristics,which is of high value in deep rock and soil support engineering.However,research on the shear resistance of quasi-NPR steel has not been carried out.To study the shear performance of quasi-NPR steel bolted rock joints,indoor shear tests of bolted rock joints under different normal stress conditions were carried out.Q235 steel and#45 steel,two representative ordinary bolt steels,were set up as a control group for comparative tests to compare and analyze the shear strength,deformation and instability mode,shear energy absorption characteristics,and bolting contribution of different types of bolts.The results show that the jointed rock masses without bolt reinforcement undergo brittle failure under shear load,while the bolted jointed rock masses show obvious ductile failure characteristics.The shear deformation ca-pacity of quasi-NPR steel is more than 3.5 times that of Q235 steel and#45 steel.No fracture occurs in the quasi-NPR steel during large shear deformation and it can provide stable shear resistance.However,the other two types of control bolts become fractured under the same conditions.Quasi-NPR steel has significant energy-absorbing characteristics under shear load and has obvious advantages in terms of absorbing the energy released by shear deformation of jointed rock masses as compared with ordinary steel.In particular,the shear force plays a major role in resisting the shear deformation of Q235 steel and#45 steel,therefore,fracture failure occurs under small bolt deformation.However,the axial force of quasi-NPR steel can be fully exerted when resisting joint shear deformation;the steel itself does not break when large shear deformation occurs,and the supporting effect of the jointed rock mass is effectively guaranteed. 展开更多
关键词 Energy absorption bolt Quasi-NPR(Negative Poisson’s ratio)steel bolted rock joints Shear test Shear performance
下载PDF
Investigating Earth Reaction to Pull-Out Process of Frictional Rock Bolts Using Distinct Element Method
13
作者 Mohammad Sadegh Ayyoobi Arash Refahi 《Open Journal of Geology》 2020年第8期851-862,共12页
The reaction of earth to pull-out process of frictional rock bolts was here modeled by the distinct element method (DEM). Ten frictional bolts were prepared;the expanding shells of five bolts included convex edges and... The reaction of earth to pull-out process of frictional rock bolts was here modeled by the distinct element method (DEM). Ten frictional bolts were prepared;the expanding shells of five bolts included convex edges and the others had the shells with concave bits. The strength of bolts was measured by applying a standard pull-out test;the results confirmed that the strength of shells with convex edges was remarkably more than the strength of other shells. Furthermore, a two-dimensional DEM model of the test was developed by a particle flow code;the obtained results showed that the reaction of rock particles to the contacts occurring between the convex edges and earth was considerably more than those of the concave bits. In the other words, the convex edges transferred the pull-out force into a large area of the surrounded rock, causing these bolts to have the highest resistance against earth movements. 展开更多
关键词 Frictional Rock bolt pull-out test Distinct Element Method Particle Flow Code
下载PDF
Anchorage performance of large-diameter FRP bolts and their application in large deformation roadway 被引量:1
14
作者 Jun Han Zuoqing Bi +2 位作者 Bing Liang Chen Cao Shuangwen Ma 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第8期1037-1043,共7页
In underground coal mines, fibre reinforced polymer(FRP) bolt is ideal for mined rib reinforcements as it can prevent gas explosions caused by shearer frictional spark. With increasing mining depth, small diameter FRP... In underground coal mines, fibre reinforced polymer(FRP) bolt is ideal for mined rib reinforcements as it can prevent gas explosions caused by shearer frictional spark. With increasing mining depth, small diameter FRP bolts used in shallow underground mining cannot fulfil the rib support requirements. Under the engineering background of deep underground shortwall mining in Wudong coal mine, this paper systematically studies Φ27 mm FRP bolt support for large deformation coal rib. Specimens with a fan-shaped cross-section were used to enable the tensile testing of the bolt rod, the measured average tensile strength of the studied FRP bolt was(486.1 ± 9.6) MPa with a maximum elongation of 5.7%±0.6%.The shear strength of the bolt was measured as approximately 258 MPa using a self-made double shear testing apparatus. Based on the equivalent radial stiffness principle, a laboratory short encapsulation pullout test(SEPT) method for rib bolting has been developed undertaken consideration of the mechanical properties of the coal seam. Results showed that the average peak anchorage forces of the Φ27 mm FRP bolt and Φ20 mm steel rebar bolt were 108.4 and 66.4 k N, respectively, which were agreed with the theoretical calculations and field measurements. Based on theoretical analysis of the loading states of the bolt under site conditions, bolting method of full-length resin grouting was adopted to offset the weaknesses of the FRP bolt. Numerical method was employed to compare the bolting effect using Φ27 mm FRP bolts and steel rebar bolts. Large diameter FRP bolting was determined as the optimum rib support scheme to increase the productivity of the coal mine and to enhance the ground control capability for+425 level mining roadways. This study provides the laboratory testing design and theoretical prediction of large diameter FRP bolts used for rib support in large deformation roadways. 展开更多
关键词 FRP bolt Laboratory SEPT Tensile strength Double shear testing Mined rib support Large deformation roadway
下载PDF
Research on the mechanical property test of a new high-strength metal bolt
15
作者 SHI Jian-jun MA Nian-jie 《Journal of Coal Science & Engineering(China)》 2011年第4期393-396,共4页
In order to study how to improve the overall performance of the operational metal bolt, based on the production process of an ordinary metal bolt used in understructure engineering, this paper focused on the existing ... In order to study how to improve the overall performance of the operational metal bolt, based on the production process of an ordinary metal bolt used in understructure engineering, this paper focused on the existing problems of ordinary metal bolts identified by some survey and analysis. The results show that the structure of operational metal bolts is so unrea- sonable that the bolt tail is easily fractured by low load capacity. Furthermore, a new type of strong big-end metal bolt and its heat treatment and roughing processing technology were introduced. Through bolt tensile and metallographic tests, the property of the new big-end bolt was analyzed. The new findings indicate that after a special processing, the overall strength and plasticity of the bolt is greatly improved, and the grain of the bolt tail structure is refined, which would help build up favorable working conditions for bolt tails. 展开更多
关键词 mechanical test big-end bolt processing technology microscopic test
下载PDF
Prediction of a maximum pull-out load of anchor bolts using an optimal combination model
16
作者 Ma Wenjie Wang Binglong +1 位作者 Wang Xu Wang Bolin 《Journal of Southeast University(English Edition)》 EI CAS 2021年第2期199-208,共10页
The mixed model of improved exponential and power function and unequal interval gray GM(1,1)model have poor accuracy in predicting the maximum pull-out load of anchor bolts.An optimal combination model was derived usi... The mixed model of improved exponential and power function and unequal interval gray GM(1,1)model have poor accuracy in predicting the maximum pull-out load of anchor bolts.An optimal combination model was derived using the optimally weighted combination theory and the minimum sum of logarithmic squared errors as the objective function.Two typical anchor bolt pull-out engineering cases were selected to compare the performance of the proposed model with those of existing ones.Results showed that the optimal combination model was suitable not only for the slow P-s curve but also for the steep P-s curve.Its accuracy and stable reliability,as well as its prediction capability classification,were better than those of the other prediction models.Therefore,the optimal combination model is an effective processing method for predicting the maximum pull-out load of anchor bolts according to measured data. 展开更多
关键词 anchor bolt maximum pull-out load mixed model of improved exponential and power function(MIEPF)model unequal interval gray GM(1 1)model optimal combination model
下载PDF
公路改扩建高边坡既有锚杆受力特性离心试验 被引量:1
17
作者 冯忠居 王伟 +2 位作者 江冠 王富春 赵瑞欣 《长江科学院院报》 CSCD 北大核心 2024年第7期110-117,125,共9页
为研究改扩建边坡二次开挖下既有锚杆的受力特性及边坡稳定性,基于自主研发的模型试验锚杆角度支护装置,采用离心试验研究了锚固角度分别为10°、20°、30°、45°、60°及锚杆横向密度分别为1根/(18 cm)、1根/(12 ... 为研究改扩建边坡二次开挖下既有锚杆的受力特性及边坡稳定性,基于自主研发的模型试验锚杆角度支护装置,采用离心试验研究了锚固角度分别为10°、20°、30°、45°、60°及锚杆横向密度分别为1根/(18 cm)、1根/(12 cm)下顺层岩质高边坡开挖全过程中坡顶水平位移、锚杆轴力及坡内土压力变化规律。结果表明:相同锚固角度下,随着边坡开挖卸荷,坡顶累计水平位移非线性增加,且开挖坡顶增幅较开挖坡中大;锚杆轴力呈单峰分布,在开挖坡顶及坡脚时轴力增幅较大,轴力峰值靠近软弱面且随开挖卸荷先减小后增大,开挖后轴力峰值仍为开挖前的61%以上;随锚固角度的增加,坡顶水平位移先减小后增大,坡内土压力先增大后减小,即存在最佳锚固角度;建议边坡开挖宜采用分级开挖,并在开挖坡顶及坡脚时适当降低速率,综合考虑边坡坡度、岩层及软弱面倾角等因素,合理设计锚固角度。研究成果有助于工程技术人员在改扩建边坡二次开挖工程中选择合适的支护措施。 展开更多
关键词 高边坡 既有锚杆 二次开挖 离心试验 锚固角度 锚杆横向密度
下载PDF
基于螺栓拉伸刚度的地铁盾构隧道纵向刚度计算
18
作者 黄大维 姜浩 +3 位作者 封坤 丁智 彩国庆 金浩 《中国铁道科学》 EI CAS CSCD 北大核心 2024年第4期89-98,共10页
针对现有盾构隧道纵向刚度计算方法缺乏试验验证且未考虑螺栓拉伸刚度等因素影响的不足,首先,理论推导盾构隧道纵向刚度的解析计算方法;然后,以上海地铁盾构隧道为背景,设计并开展缩尺模型试验,通过实测结果验证解析计算方法;最后,以珠... 针对现有盾构隧道纵向刚度计算方法缺乏试验验证且未考虑螺栓拉伸刚度等因素影响的不足,首先,理论推导盾构隧道纵向刚度的解析计算方法;然后,以上海地铁盾构隧道为背景,设计并开展缩尺模型试验,通过实测结果验证解析计算方法;最后,以珠三角地区盾构隧道为工程背景,计算盾构隧道纵向刚度。结果表明:由于螺栓预紧力的存在,跨中加载较小时的实测隧道纵向刚度偏大,但随着跨中加载的增加,实测结果与理论计算结果趋于接近,验证了解析计算方法的合理性;珠三角地区盾构隧道在弹性阶段、塑性阶段和塑性变形后的纵向螺栓拉伸刚度依次为2.1255×10^(6),0.9859×10^(6)和3.1856×10^(6) N·m^(-1),纵向刚度依次为3.3068×10^(8),1.5345×10^(8)和4.9543×10^(8) N·m^(2);考虑到地铁盾构隧道发生纵向变形时,一定范围内的纵向螺栓所处变形阶段存在差别,在实际纵向刚度取值时应根据隧道最大变形导致的纵向螺栓拉伸量来具体分析确定。 展开更多
关键词 地铁 盾构隧道 纵向刚度 螺栓拉伸刚度 纵向螺栓 模型试验
下载PDF
锚杆张拉力无损测试原理与技术研究
19
作者 张天予 钟新谷 +1 位作者 赵超 程忠悦 《岩土工程学报》 EI CAS CSCD 北大核心 2024年第1期140-150,共11页
基于锚杆锚固体系多接触面特征,建造室内模型研究其锚固体系振动特性。通过在锚杆无应力段顶端安装加速度传感器测试时程信号,经快速傅里叶变换获得锚杆无应力段顶端振动频谱图,其频谱图的卓越频率具有良好的可识别性,据此获得其卓越频... 基于锚杆锚固体系多接触面特征,建造室内模型研究其锚固体系振动特性。通过在锚杆无应力段顶端安装加速度传感器测试时程信号,经快速傅里叶变换获得锚杆无应力段顶端振动频谱图,其频谱图的卓越频率具有良好的可识别性,据此获得其卓越频率与锚杆张拉力、锚杆无应力长度的变化规律,其卓越频率并非锚杆张拉段横向多阶振动频率。以此为基础建立了视锚固螺母为弹性基础的锚杆弹性振动模型、锚固螺母及锚杆相对螺母与球形垫圈接触面转动的刚体振动模型,分别获得其模型频率方程,基于其识别的卓越频率求解频率方程中的刚度参数,室内与现场试验表明其刚度参数—锚杆张拉力具有良好的线性相关性和单调递增关系。进一步室内模型试验表明其刚度参数—锚杆张拉力关系特征与蝶形托盘接触不同介质、不同锚杆张拉段长度不具有明显的相关性。为此提出了锚杆张拉力无损测试原理、方法与实现的技术路线,现场小规模试验表明本文提出的方法具有可靠性。 展开更多
关键词 隧道工程 锚杆 振动特性分析 张拉力测试 无损检测
下载PDF
在役螺栓超声三维成像监测数据的智能化分析方法
20
作者 姬升阳 毛延翩 +5 位作者 冉毅川 刘志辉 曾广栋 魏学锋 代淮北 原可义 《无损检测》 CAS 2024年第5期11-14,共4页
螺栓是一种常见的机械连接件,一旦失效,可能会导致设备损坏、结构崩塌,甚至危及人身安全。因此,在役螺栓的监测一直受到广泛关注。将相控阵超声全聚焦技术应用于螺栓在役监测,开发了专用系统和阵列探头,实现了三维成像可视化监测,改变... 螺栓是一种常见的机械连接件,一旦失效,可能会导致设备损坏、结构崩塌,甚至危及人身安全。因此,在役螺栓的监测一直受到广泛关注。将相控阵超声全聚焦技术应用于螺栓在役监测,开发了专用系统和阵列探头,实现了三维成像可视化监测,改变了螺栓监测数据单一的现状。针对大量三维图像化数据处理的关键问题,提出了智能化分析方法,对比分析了决策树、支持向量机和神经网络算法的适用性,最终开发了基于决策树算法的智能分析评价软件模块并取得了较好的检测效果。 展开更多
关键词 螺栓监测 相控阵超声 全聚焦 智能化检测
下载PDF
上一页 1 2 60 下一页 到第
使用帮助 返回顶部