In this paper,a failure evaluation criterion was proposed for the bolted casing-flange structure under impact loading.Subsequently,ballistic tests with eighteen bolted casing-flange structure specimens were conducted ...In this paper,a failure evaluation criterion was proposed for the bolted casing-flange structure under impact loading.Subsequently,ballistic tests with eighteen bolted casing-flange structure specimens were conducted to validate the failure evaluation criterion.Parameter studies were then carried out using the validated FE models.Both the experimental and numerical results demonstrated the accuracy of the failure evaluation criterion.The failure evaluation criterion provided a quick and easy way to determine the failure mode of the casing connection area by using the materials and dimensions of the structure.Based on the failure evaluation criterion,designing the structural failure mode of the bolted casing-flange structure to be between flange failure and bolt failure can improve the impact resistance of the connection area of the aero-engine casings.This investigation revealed that the impact failure is not the unique criterion in evaluating the containment of the casing connection area,structural failure should also be involved in the evaluation criteria.展开更多
Flange joint part is the weak link of wind turbine tower.In view of the special structure,complex stress and easy failure of the connecting bolt of the wind turbine tower flange,the relationship between the external l...Flange joint part is the weak link of wind turbine tower.In view of the special structure,complex stress and easy failure of the connecting bolt of the wind turbine tower flange,the relationship between the external load of the tower section and the internal stress of the bolt is established by the finite element method,and the time series internal stress of the bolt is calculated by the Schmidt-Neuper algorithm.The S-N curve which is suitable for the connecting bolt material of the tower flange is selected by the GL2010 specification.On the basis of Miner’s fatigue cumulative damage theory and rain flow counting method,the fatigue strength of the whole ring bolt is roughly calculated,and the most dangerous part is determined.The axial symmetry model of screw connection is used for accurately calculating the fatigue cumulative damage of the bolt at the dangerous part.The results show that the fatigue life of the bolts in the most dangerous position can meet the requirements,the engineering algorithm has advantages in determining the dangerous part of the whole ring bolt,and the finite element method has high accuracy in predicting the fatigue life of the bolts in the dangerous part.The proposed method is feasible and effective in predicting the fatigue life of the flange joint bolts of the tower.展开更多
基金support from the National Natural Science Foundation of China(Nos.11772158,11502113)the Fundamental Research Funds for Central Universities,China(No.30917011103)。
文摘In this paper,a failure evaluation criterion was proposed for the bolted casing-flange structure under impact loading.Subsequently,ballistic tests with eighteen bolted casing-flange structure specimens were conducted to validate the failure evaluation criterion.Parameter studies were then carried out using the validated FE models.Both the experimental and numerical results demonstrated the accuracy of the failure evaluation criterion.The failure evaluation criterion provided a quick and easy way to determine the failure mode of the casing connection area by using the materials and dimensions of the structure.Based on the failure evaluation criterion,designing the structural failure mode of the bolted casing-flange structure to be between flange failure and bolt failure can improve the impact resistance of the connection area of the aero-engine casings.This investigation revealed that the impact failure is not the unique criterion in evaluating the containment of the casing connection area,structural failure should also be involved in the evaluation criteria.
基金the Special Research Fund for the Natural Science Foundation of Inner Mongolia Autonomous Region(No.2019MS05070)。
文摘Flange joint part is the weak link of wind turbine tower.In view of the special structure,complex stress and easy failure of the connecting bolt of the wind turbine tower flange,the relationship between the external load of the tower section and the internal stress of the bolt is established by the finite element method,and the time series internal stress of the bolt is calculated by the Schmidt-Neuper algorithm.The S-N curve which is suitable for the connecting bolt material of the tower flange is selected by the GL2010 specification.On the basis of Miner’s fatigue cumulative damage theory and rain flow counting method,the fatigue strength of the whole ring bolt is roughly calculated,and the most dangerous part is determined.The axial symmetry model of screw connection is used for accurately calculating the fatigue cumulative damage of the bolt at the dangerous part.The results show that the fatigue life of the bolts in the most dangerous position can meet the requirements,the engineering algorithm has advantages in determining the dangerous part of the whole ring bolt,and the finite element method has high accuracy in predicting the fatigue life of the bolts in the dangerous part.The proposed method is feasible and effective in predicting the fatigue life of the flange joint bolts of the tower.