Axial compression stress, produced by the pre-tightening force of a bolt, is a necessary condition for surrounding rock to form a whole structure. For this study, we built a mechanical model for an end-anchorage bolt,...Axial compression stress, produced by the pre-tightening force of a bolt, is a necessary condition for surrounding rock to form a whole structure. For this study, we built a mechanical model for an end-anchorage bolt, which represented the effect of a bolt on the surrounding rock in roadways in order to obtain its elastic solution. Simultaneously, we analyzed factors affecting the axial compression of the bolt on the surrounding rock and obtained the axial stress contours of the anchorage area through this elastic solution. The results indicate that 1) the axial compression stress in the anchorage area is proportional to the pre-tightening force and confirms the rule that stress declines sharply with the increase in axial distance from the bolt, with an effective stress radius of 1 m; 2) the maximum axial compression stress declines first and then rises with the increase in depth from the surface of the anchorage surrounding rock and 3) the size of the axial compression area is mainly determined by the length of the bolt.展开更多
The purpose of this study was to investigate the effect of bolt profile on load transfer mechanism of fully grouted bolts in jointed rocks using analytical and numerical methods. Based on the analytical method with de...The purpose of this study was to investigate the effect of bolt profile on load transfer mechanism of fully grouted bolts in jointed rocks using analytical and numerical methods. Based on the analytical method with development of methods, a new model is presented. To validate the analytical model, five different profiles modeled by ANSYS software. The profile of rock bolts T3 and T4with load transfer capacity,respectively 180 and 195 kN in the jointed rocks was selected as the optimum profiles. Finally, the selected profiles were examined in Tabas Coal Mine. FLAC analysis indicates that patterns 6+7 with2 NO flexi bolt 4 m better than other patterns within the faulted zone.展开更多
In order to avoid the deep-well oil shale roadway being deformed, damaged, or difficult to maintain after excavating and supporting in Haishiwan coal mine, this paper has analyzed the characteristics of the deformed r...In order to avoid the deep-well oil shale roadway being deformed, damaged, or difficult to maintain after excavating and supporting in Haishiwan coal mine, this paper has analyzed the characteristics of the deformed roadway and revealed its failure mechanism by taking comprehensively the methods of field geological investigation, displacement monitoring of surrounding rock, rock properties and hydration properties experiments and field application tests. Based on this work, the high-resistance controlled yielding supporting principle is proposed, which is: to "resist" by high pre-tightening force and high stiff- ness in the early stage, to "yield" by making use of the controlled deformation of a yielding tube in the middle stage, and to "fix" by applying total-section Gunite in the later stage. A high-resistance controlled yielding supporting technique of "high pre-tightening force yielding anchor bolt + small-bore pre-tight- ening force anchor cable + rebar ladder beam + rhombic metal mesh + lagging gunite" has been estab- lished, and industrial on site testing implemented. The practical results show that the high-resistance controlled yielding supporting technique can effectively control the large deformation and long-time rheology of deep-well oil shale roadways and can provide beneficial references for the maintenance of other con-generic roadways.Deep-well Oil shale展开更多
A new and falsifiable realist interpretation of quantum mechanics is examined in relation to the sum over histories concept, pilot wave theory and the many-worlds interpretation. This electric charge/transactional mod...A new and falsifiable realist interpretation of quantum mechanics is examined in relation to the sum over histories concept, pilot wave theory and the many-worlds interpretation. This electric charge/transactional model explains how the single electron double-slit experiment produces extremely localized endpoints from diffracted wavicles, why these endpoints are scattered around the entire surface of the absorber screen, and why these points of contact result in the characteristic fringe pattern as they accumulate. Advanced waves and substantive electric charge effects in the double-slit experiment are postulated, then this hypothesis is supported by a quantitative analysis of electron emission in comparison to lightning. The wider implications if advanced waves and electric charge distribution prove to be significant factors in the double-slit experiment are discussed, including possible parallels with meteorological and neurological phenomena.展开更多
Combined with the 3D FEM,end-anchored anchorage bolts were simulated by implicit anchorage bolt element.Implicit anchorage bolt elements hide in the elements of rock mass and extremely simplify the element subdivision...Combined with the 3D FEM,end-anchored anchorage bolts were simulated by implicit anchorage bolt element.Implicit anchorage bolt elements hide in the elements of rock mass and extremely simplify the element subdivision.The calculated value of an- chorage bolt stress is larger than the measured one for the most time.we further analyzed the reciprocity of anchorage bolt and rock mass,and then deduced the analytical equa- tions of anchorage bolt stress and rock mass deformation under elasto-plastic state.The results indicate that it is essential to revise the anchorage bolts stress by using the formu- las deduced when rock mass is softened or significantly deformed.Finally,a case study indicates that the calculated results agree with those measured.Some helpful methods are offerd for more accurate simulation of the support effect and anchorage bolts real stress state.展开更多
The purpose of this paper is to reveal the stress distribution characteristic along the full length anchor bolt. Based on the mechanic model set up, the author calculated the anchor mechanism of the full length resin ...The purpose of this paper is to reveal the stress distribution characteristic along the full length anchor bolt. Based on the mechanic model set up, the author calculated the anchor mechanism of the full length resin rock bolt. The stress distribution characteristic is different according to different type of surrounding rock. The conclusion is important to optimize the roadway bolt support design.展开更多
基金Projects are the National Basic Research Program of China (No.2007CB209400)the 111 Project (No.B07028)the National Natural Science Foundation of China (Nos.50634050 and 50904065)
文摘Axial compression stress, produced by the pre-tightening force of a bolt, is a necessary condition for surrounding rock to form a whole structure. For this study, we built a mechanical model for an end-anchorage bolt, which represented the effect of a bolt on the surrounding rock in roadways in order to obtain its elastic solution. Simultaneously, we analyzed factors affecting the axial compression of the bolt on the surrounding rock and obtained the axial stress contours of the anchorage area through this elastic solution. The results indicate that 1) the axial compression stress in the anchorage area is proportional to the pre-tightening force and confirms the rule that stress declines sharply with the increase in axial distance from the bolt, with an effective stress radius of 1 m; 2) the maximum axial compression stress declines first and then rises with the increase in depth from the surface of the anchorage surrounding rock and 3) the size of the axial compression area is mainly determined by the length of the bolt.
文摘The purpose of this study was to investigate the effect of bolt profile on load transfer mechanism of fully grouted bolts in jointed rocks using analytical and numerical methods. Based on the analytical method with development of methods, a new model is presented. To validate the analytical model, five different profiles modeled by ANSYS software. The profile of rock bolts T3 and T4with load transfer capacity,respectively 180 and 195 kN in the jointed rocks was selected as the optimum profiles. Finally, the selected profiles were examined in Tabas Coal Mine. FLAC analysis indicates that patterns 6+7 with2 NO flexi bolt 4 m better than other patterns within the faulted zone.
基金Financial support for this work, provided by the National Natural Science Foundation of China (No. 51174195)the Graduate Student Scientific Research Innovation Project of the Jiangsu Province Ordinary University (No. CXZZ12_0954)the Research Foundation of the State Key Laboratory of Coal Resources and Mine Safety (No. SKLCRSM08X04)
文摘In order to avoid the deep-well oil shale roadway being deformed, damaged, or difficult to maintain after excavating and supporting in Haishiwan coal mine, this paper has analyzed the characteristics of the deformed roadway and revealed its failure mechanism by taking comprehensively the methods of field geological investigation, displacement monitoring of surrounding rock, rock properties and hydration properties experiments and field application tests. Based on this work, the high-resistance controlled yielding supporting principle is proposed, which is: to "resist" by high pre-tightening force and high stiff- ness in the early stage, to "yield" by making use of the controlled deformation of a yielding tube in the middle stage, and to "fix" by applying total-section Gunite in the later stage. A high-resistance controlled yielding supporting technique of "high pre-tightening force yielding anchor bolt + small-bore pre-tight- ening force anchor cable + rebar ladder beam + rhombic metal mesh + lagging gunite" has been estab- lished, and industrial on site testing implemented. The practical results show that the high-resistance controlled yielding supporting technique can effectively control the large deformation and long-time rheology of deep-well oil shale roadways and can provide beneficial references for the maintenance of other con-generic roadways.Deep-well Oil shale
文摘A new and falsifiable realist interpretation of quantum mechanics is examined in relation to the sum over histories concept, pilot wave theory and the many-worlds interpretation. This electric charge/transactional model explains how the single electron double-slit experiment produces extremely localized endpoints from diffracted wavicles, why these endpoints are scattered around the entire surface of the absorber screen, and why these points of contact result in the characteristic fringe pattern as they accumulate. Advanced waves and substantive electric charge effects in the double-slit experiment are postulated, then this hypothesis is supported by a quantitative analysis of electron emission in comparison to lightning. The wider implications if advanced waves and electric charge distribution prove to be significant factors in the double-slit experiment are discussed, including possible parallels with meteorological and neurological phenomena.
文摘Combined with the 3D FEM,end-anchored anchorage bolts were simulated by implicit anchorage bolt element.Implicit anchorage bolt elements hide in the elements of rock mass and extremely simplify the element subdivision.The calculated value of an- chorage bolt stress is larger than the measured one for the most time.we further analyzed the reciprocity of anchorage bolt and rock mass,and then deduced the analytical equa- tions of anchorage bolt stress and rock mass deformation under elasto-plastic state.The results indicate that it is essential to revise the anchorage bolts stress by using the formu- las deduced when rock mass is softened or significantly deformed.Finally,a case study indicates that the calculated results agree with those measured.Some helpful methods are offerd for more accurate simulation of the support effect and anchorage bolts real stress state.
文摘The purpose of this paper is to reveal the stress distribution characteristic along the full length anchor bolt. Based on the mechanic model set up, the author calculated the anchor mechanism of the full length resin rock bolt. The stress distribution characteristic is different according to different type of surrounding rock. The conclusion is important to optimize the roadway bolt support design.