AlCl3-mediated cleavage of ethereal methyl–oxygen bond in aroylated 2,7-dimethoxynaphthalene compounds proceeds chemospecifically and regioselectively. The ethereal bond at the β(2)-position of 1-monoaroylated 2,7-d...AlCl3-mediated cleavage of ethereal methyl–oxygen bond in aroylated 2,7-dimethoxynaphthalene compounds proceeds chemospecifically and regioselectively. The ethereal bond at the β(2)-position of 1-monoaroylated 2,7-dimethoxynaphthalene is cleaved readily and predominantly against the β(7)-position, whereas scission of β-ethereal bonds of 1,8-diaroylated 2,7-dimethoxynaphthalene hardly undergoes like the non-aroylated mother frame compound of 2,7-dimethoxynaphthalene.展开更多
The ultrasonic wedge bonding with d25 μm copper wire was achieved on Au/Ni plated Cu substrate at ambient temperature.Ultrasonic wedge bonding mechanism was investigated by using SEM/EDX,pull test,shear test and micr...The ultrasonic wedge bonding with d25 μm copper wire was achieved on Au/Ni plated Cu substrate at ambient temperature.Ultrasonic wedge bonding mechanism was investigated by using SEM/EDX,pull test,shear test and microhardness test.The results show that the thinning of the Au layer occurs directly below the center of the bonding tool with the bonding power increasing.The interdiffusion between copper wire and Au metallization during the wedge bonding is assumed negligible,and the wedge bonding is achieved by wear action induced by ultrasonic vibration.The ultrasonic power contributes to enhance the deformation of copper wire due to ultrasonic softening effect which is then followed by the strain hardening of the copper wedge bonding.展开更多
文摘AlCl3-mediated cleavage of ethereal methyl–oxygen bond in aroylated 2,7-dimethoxynaphthalene compounds proceeds chemospecifically and regioselectively. The ethereal bond at the β(2)-position of 1-monoaroylated 2,7-dimethoxynaphthalene is cleaved readily and predominantly against the β(7)-position, whereas scission of β-ethereal bonds of 1,8-diaroylated 2,7-dimethoxynaphthalene hardly undergoes like the non-aroylated mother frame compound of 2,7-dimethoxynaphthalene.
基金Prpject(E052104/50705021)supported by the National Natural Science Foundation of ChinaProject(2006:01504489)supported by the Development Program for Outstanding Young Teachers in HIT
文摘The ultrasonic wedge bonding with d25 μm copper wire was achieved on Au/Ni plated Cu substrate at ambient temperature.Ultrasonic wedge bonding mechanism was investigated by using SEM/EDX,pull test,shear test and microhardness test.The results show that the thinning of the Au layer occurs directly below the center of the bonding tool with the bonding power increasing.The interdiffusion between copper wire and Au metallization during the wedge bonding is assumed negligible,and the wedge bonding is achieved by wear action induced by ultrasonic vibration.The ultrasonic power contributes to enhance the deformation of copper wire due to ultrasonic softening effect which is then followed by the strain hardening of the copper wedge bonding.