We use the Schwinger-boson approach to study the anisotropy ferrimagnetic spin-(1/2,1) chain with bond alternation.Based on the effect of bond alternation δ,we obtain energy gap,free energy,and specific heat,respec...We use the Schwinger-boson approach to study the anisotropy ferrimagnetic spin-(1/2,1) chain with bond alternation.Based on the effect of bond alternation δ,we obtain energy gap,free energy,and specific heat,respectively.The specific heat with larger bond alternation(δ 〉 0.7) displays a peak at low temperature.Based on the effect of XXZ anisotropy parameter Δ,we present excited spectrums,free energy,and specific heat,respectively.展开更多
Rotational isomerism effects on the optical spectra of a push-pull nonlinear optical chro-mophore 2-dicyanomethylen-3-cyano-4-f2-[E-(4-N,N-di(2-acetoxyethyl)-amino)-phenylene-(3,4-dibutyl)-thien-5]-E-vinylg-5,5-...Rotational isomerism effects on the optical spectra of a push-pull nonlinear optical chro-mophore 2-dicyanomethylen-3-cyano-4-f2-[E-(4-N,N-di(2-acetoxyethyl)-amino)-phenylene-(3,4-dibutyl)-thien-5]-E-vinylg-5,5-dimethyl-2,5-dihydrofuran (FTC) in a few solvents have been studied using the time-dependent density functional theory in combination with the polarizable continuum model. It is shown that the maximum absorption peaks of the ro-tamers have difference of nearly 30 nm both in vacuum and in solutions. The population of the rotamers changes a lot in different solvents. Based on the geometries optimized by Hartree-Fock method, the Maxwell-Boltzmann averaged absorption has been calculated and the maximum absorption peak is in good agreement with experiment. It indicates that the bond length alternation can have an important effect on the optical spectra.展开更多
Carbyne,the linear chain of carbon,promises the strongest and toughest material but possesses a Peierls instability(alternating single-bonds and triple-bonds)that reduces its strength and toughness.Herein,we computati...Carbyne,the linear chain of carbon,promises the strongest and toughest material but possesses a Peierls instability(alternating single-bonds and triple-bonds)that reduces its strength and toughness.Herein,we computationally found that the gravimetric strength,strain-to-failure,and gravimetric toughness can be improved from 74 GPa·g^(-1)·cm^(3),18%,and 9.4 k J·g^(-1)for pristine carbyne to the highest values of 106 GPa·g^(-1)·cm^(3),26%,and 19.0 k J·g^(-1)for carbyne upon hole injection of+0.07 e/atom,indicating the charged carbyne with record-breaking mechanical performance.Based on the analyses of the atomic and electronic structures,the underlying mechanism behind the record-breaking mechanical performance was revealed as the suppressed and even eliminated bond alternation of carbyne upon charge injection.展开更多
In this work,we measure the Raman scattering cross sections(RSCSs) of the carbon-carbon(CC) stretching vibrational modes of canthaxanthin in benzene,acetone,n-heptane,cyclohexane,and m-xylene.It is found that the ...In this work,we measure the Raman scattering cross sections(RSCSs) of the carbon-carbon(CC) stretching vibrational modes of canthaxanthin in benzene,acetone,n-heptane,cyclohexane,and m-xylene.It is found that the absolute RSCS of CC stretching mode of canthaxanthin reaches a value of 10 24 cm ^-2 ·molecule ^-1 ·sr ^-1 at 8×10 ^-5 M,which is 6 orders of magnitude larger than general RSCS(10 30 cm 2 ·molecule 1 ·sr 1),and the RSCSs of canthaxanthin in various solvents are very different due to the hydrogen bond.A theoretical interpretation of the magnetic experimental results is given,which is introduced in a qualitative nonlinear model of coherent weakly damped electron-lattice vibration in the structural order of polyene chains.In addition,the optimal structure and the bond length alternation(BLA) parameter of canthaxanthin are calculated using quantum chemistry calculation(at the b3lyp/6-31g(d,p) level of theory).The theoretical calculations are in good agreement with the experimental results.Furthermore,the combination of Raman spectroscopy and the quantum chemistry calculation study would be a quite suitable method of studying the structures and the properties of the π-conjugated systems.展开更多
The present work concerns the study of solvent effects on the geometrical structures, as well as one- and two-photon absorption (TPA) processes, for two series of alkyne and alkene π-bridging molecules, within the ...The present work concerns the study of solvent effects on the geometrical structures, as well as one- and two-photon absorption (TPA) processes, for two series of alkyne and alkene π-bridging molecules, within the framework of the polarization continuum model. Particular emphasis was put on the characterization of solvent effects on the molecular geometrical structures and geometric distortion, which were measured by the bond-length-alternation parameter. The π centres in the compounds are seen to play a decisive role in increasing the TPA cross section and nonlinear optical properties. All studied molecules have relatively strong TPA characteristics, while the alkyne π-bridging ones yield larger TPA cross sections.展开更多
It is shown that in the quantum structural approach to high-Tc superconductivity, the wave function in terms of the alternate molecular bonding geminals possesses off-diagonal long-range order (ODLRO).
基金supported by the National Natural Science Foundation of China(Grant No.10774035)the Qianjiang RenCai Program of Zhejiang Province,China(Grant No.2007R0010)
文摘We use the Schwinger-boson approach to study the anisotropy ferrimagnetic spin-(1/2,1) chain with bond alternation.Based on the effect of bond alternation δ,we obtain energy gap,free energy,and specific heat,respectively.The specific heat with larger bond alternation(δ 〉 0.7) displays a peak at low temperature.Based on the effect of XXZ anisotropy parameter Δ,we present excited spectrums,free energy,and specific heat,respectively.
基金ACKNOWLEDGMENTS This work was supported by Young Scientists Fund of the National Natural Science Foundation of China (No.10904085).
文摘Rotational isomerism effects on the optical spectra of a push-pull nonlinear optical chro-mophore 2-dicyanomethylen-3-cyano-4-f2-[E-(4-N,N-di(2-acetoxyethyl)-amino)-phenylene-(3,4-dibutyl)-thien-5]-E-vinylg-5,5-dimethyl-2,5-dihydrofuran (FTC) in a few solvents have been studied using the time-dependent density functional theory in combination with the polarizable continuum model. It is shown that the maximum absorption peaks of the ro-tamers have difference of nearly 30 nm both in vacuum and in solutions. The population of the rotamers changes a lot in different solvents. Based on the geometries optimized by Hartree-Fock method, the Maxwell-Boltzmann averaged absorption has been calculated and the maximum absorption peak is in good agreement with experiment. It indicates that the bond length alternation can have an important effect on the optical spectra.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12172261 and 11972263)
文摘Carbyne,the linear chain of carbon,promises the strongest and toughest material but possesses a Peierls instability(alternating single-bonds and triple-bonds)that reduces its strength and toughness.Herein,we computationally found that the gravimetric strength,strain-to-failure,and gravimetric toughness can be improved from 74 GPa·g^(-1)·cm^(3),18%,and 9.4 k J·g^(-1)for pristine carbyne to the highest values of 106 GPa·g^(-1)·cm^(3),26%,and 19.0 k J·g^(-1)for carbyne upon hole injection of+0.07 e/atom,indicating the charged carbyne with record-breaking mechanical performance.Based on the analyses of the atomic and electronic structures,the underlying mechanism behind the record-breaking mechanical performance was revealed as the suppressed and even eliminated bond alternation of carbyne upon charge injection.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11004252 and 10974067)the National Basic Research Program of China (Grant No. 2012CB722802)
文摘In this work,we measure the Raman scattering cross sections(RSCSs) of the carbon-carbon(CC) stretching vibrational modes of canthaxanthin in benzene,acetone,n-heptane,cyclohexane,and m-xylene.It is found that the absolute RSCS of CC stretching mode of canthaxanthin reaches a value of 10 24 cm ^-2 ·molecule ^-1 ·sr ^-1 at 8×10 ^-5 M,which is 6 orders of magnitude larger than general RSCS(10 30 cm 2 ·molecule 1 ·sr 1),and the RSCSs of canthaxanthin in various solvents are very different due to the hydrogen bond.A theoretical interpretation of the magnetic experimental results is given,which is introduced in a qualitative nonlinear model of coherent weakly damped electron-lattice vibration in the structural order of polyene chains.In addition,the optimal structure and the bond length alternation(BLA) parameter of canthaxanthin are calculated using quantum chemistry calculation(at the b3lyp/6-31g(d,p) level of theory).The theoretical calculations are in good agreement with the experimental results.Furthermore,the combination of Raman spectroscopy and the quantum chemistry calculation study would be a quite suitable method of studying the structures and the properties of the π-conjugated systems.
文摘The present work concerns the study of solvent effects on the geometrical structures, as well as one- and two-photon absorption (TPA) processes, for two series of alkyne and alkene π-bridging molecules, within the framework of the polarization continuum model. Particular emphasis was put on the characterization of solvent effects on the molecular geometrical structures and geometric distortion, which were measured by the bond-length-alternation parameter. The π centres in the compounds are seen to play a decisive role in increasing the TPA cross section and nonlinear optical properties. All studied molecules have relatively strong TPA characteristics, while the alkyne π-bridging ones yield larger TPA cross sections.
基金Project (No. 29892168) supported by the National Natural Science Foundation of China.
文摘It is shown that in the quantum structural approach to high-Tc superconductivity, the wave function in terms of the alternate molecular bonding geminals possesses off-diagonal long-range order (ODLRO).