期刊文献+
共找到1,079篇文章
< 1 2 54 >
每页显示 20 50 100
Novel damage constitutive models and new quantitative identification method for stress thresholds of rocks under uniaxial compression
1
作者 DU Kun YI Yang +3 位作者 LUO Xin-yao LIU Kai LI Peng WANG Shao-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2658-2675,共18页
Four key stress thresholds exist in the compression process of rocks,i.e.,crack closure stress(σ_(cc)),crack initiation stress(σ_(ci)),crack damage stress(σ_(cd))and compressive strength(σ_(c)).The quantitative id... Four key stress thresholds exist in the compression process of rocks,i.e.,crack closure stress(σ_(cc)),crack initiation stress(σ_(ci)),crack damage stress(σ_(cd))and compressive strength(σ_(c)).The quantitative identifications of the first three stress thresholds are of great significance for characterizing the microcrack growth and damage evolution of rocks under compression.In this paper,a new method based on damage constitutive model is proposed to quantitatively measure the stress thresholds of rocks.Firstly,two different damage constitutive models were constructed based on acoustic emission(AE)counts and Weibull distribution function considering the compaction stages of the rock and the bearing capacity of the damage element.Then,the accumulative AE counts method(ACLM),AE count rate method(CRM)and constitutive model method(CMM)were introduced to determine the stress thresholds of rocks.Finally,the stress thresholds of 9 different rocks were identified by ACLM,CRM,and CMM.The results show that the theoretical stress−strain curves obtained from the two damage constitutive models are in good agreement with that of the experimental data,and the differences between the two damage constitutive models mainly come from the evolutionary differences of the damage variables.The results of the stress thresholds identified by the CMM are in good agreement with those identified by the AE methods,i.e.,ACLM and CRM.Therefore,the proposed CMM can be used to determine the stress thresholds of rocks. 展开更多
关键词 stress threshold acoustic emission damage constitutive model damage element quantitative method
下载PDF
Parameter calibration of the tensile-shear interactive damage constitutive model for sandstone failure
2
作者 Yun Shu Zheming Zhu +4 位作者 Meng Wang Weiting Gao Fei Wang Duanying Wan Yuntao Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1153-1174,共22页
The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The bas... The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models. 展开更多
关键词 damage constitutive model Parameter calibration Rock modeling SANDSTONE Dynamic impact load Tensile-shear interactive damage(TSID)model
下载PDF
A whole process damage constitutive model for layered sandstone under uniaxial compression based on Logistic function
3
作者 LIU Dong-qiao GUO Yun-peng +1 位作者 LING Kai LI Jie-yu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2411-2430,共20页
Bedding structural planes significantly influence the mechanical properties and stability of engineering rock masses.This study conducts uniaxial compression tests on layered sandstone with various bedding angles(0... Bedding structural planes significantly influence the mechanical properties and stability of engineering rock masses.This study conducts uniaxial compression tests on layered sandstone with various bedding angles(0°,15°,30°,45°,60°,75°and 90°)to explore the impact of bedding angle on the deformational mechanical response,failure mode,and damage evolution processes of rocks.It develops a damage model based on the Logistic equation derived from the modulus’s degradation considering the combined effect of the sandstone bedding dip angle and load.This model is employed to study the damage accumulation state and its evolution within the layered rock mass.This research also introduces a piecewise constitutive model that considers the initial compaction characteristics to simulate the whole deformation process of layered sandstone under uniaxial compression.The results revealed that as the bedding angle increases from 0°to 90°,the uniaxial compressive strength and elastic modulus of layered sandstone significantly decrease,slightly increase,and then decline again.The corresponding failure modes transition from splitting tensile failure to slipping shear failure and back to splitting tensile failure.As indicated by the modulus’s degradation,the damage characteristics can be categorized into four stages:initial no damage,damage initiation,damage acceleration,and damage deceleration termination.The theoretical damage model based on the Logistic equation effectively simulates and predicts the entire damage evolution process.Moreover,the theoretical constitutive model curves closely align with the actual stress−strain curves of layered sandstone under uniaxial compression.The introduced constitutive model is concise,with fewer parameters,a straightforward parameter determination process,and a clear physical interpretation.This study offers valuable insights into the theory of layered rock mechanics and holds implications for ensuring the safety of rock engineering. 展开更多
关键词 layered sandstone uniaxial compression damage evolution Logistic function constitutive model
下载PDF
Constitutive model of viscoelastic dynamic damage for the material of gas obturator in modular-charge howitzer
4
作者 Zhonggang Li Longmiao Chen +2 位作者 Yifan Li Yufeng Jia Quan Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期203-216,共14页
In order to investigate the mechanical response behavior of the gas obturator of the breech mechanism,made of polychloroprene rubber(PCR), uniaxial compression experiments were carried out by using a universal testing... In order to investigate the mechanical response behavior of the gas obturator of the breech mechanism,made of polychloroprene rubber(PCR), uniaxial compression experiments were carried out by using a universal testing machine and a split Hopkinson pressure bar(SHPB), obtaining stress-strain responses at different temperatures and strain rates. The results revealed that, in comparison to other polymers, the gas obturator material exhibited inconspicuous strain softening and hardening effects;meanwhile, the mechanical response was more affected by the strain rate than by temperature. Subsequently, a succinct viscoelastic damage constitutive model was developed based on the ZWT model, including ten undetermined parameters, formulated with incorporating three parallel components to capture the viscoelastic response at high strain rate and further enhanced by integrating a three-parameter Weibull function to describe the damage. Compared to the ZWT model, the modified model could effectively describe the mechanical response behavior of the gas obturator material at high strain rates. This research laid a theoretical foundation for further investigation into the influence of chamber sealing issues on artillery firing. 展开更多
关键词 Breech mechanism Gas obturator Polychloroprene rubber constitutive model Strain rate damage
下载PDF
Mechanical properties and damage constitutive model of sandstone after acid corrosion and high temperature treatments 被引量:2
5
作者 Qijian Chen Youliang Chen +3 位作者 Peng Xiao Xi Du Yungui Pan Rafig Azzam 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第6期747-760,共14页
Aiming at the problem of temperature-mechanics-chemical(T-M-C)action encountered by rocks in underground engineering,sandstone was selected as the sample for acid corrosion treatment at pH 1,3,5 and 7,the acid corrosi... Aiming at the problem of temperature-mechanics-chemical(T-M-C)action encountered by rocks in underground engineering,sandstone was selected as the sample for acid corrosion treatment at pH 1,3,5 and 7,the acid corrosion treated samples were then subjected to high-temperature experiments at 25,300,600,and 900℃,and triaxial compression experiments were conducted in the laboratory.The experimental results show that the superposition of chemical damage and thermal damage has a significant impact on the quality,wave velocity,porosity and compression failure characteristics of the rock.Based on the Lemaitre strain equivalent hypothesis theory,the damage degree of rock material was described by introducing damage variables,and the spatial mobilized plane(SMP)criterion was adopted.The damage constitutive model can well reflect the stress-strain characteristics of the rock triaxial compression process,which verified the rationality and reliability of the model parameters.The experiment and constitutive model analyzed the change law of mechanical properties of rock after chemical corrosion and high temperature thermal damage,which had certain practical significance for rock engineering construction. 展开更多
关键词 Acid corrosion High temperature Mechanical properties damage variable SMP criterion constitutive model
下载PDF
Predicting the electromechanical properties of small caliber projectile impact igniter using PZT dynamic damage constitutive model considering crack propagation 被引量:1
6
作者 Rui-zhi Wang Zhi-qiang Wang +5 位作者 En-ling Tang Lei Li Guo-lai Yang Chun Cheng Li-ping He Ya-fei Han 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期121-135,共15页
Block piezoelectric ceramics(PZTs)are often used in impact igniters to provide activation energy for electric initiators.Under the action of strong impact stress,PZTs release electric energy accompanied by crack initi... Block piezoelectric ceramics(PZTs)are often used in impact igniters to provide activation energy for electric initiators.Under the action of strong impact stress,PZTs release electric energy accompanied by crack initiation,propagation and crushing.At present,the electrical output performance of PZTs in projectile is usually calculated by quasi-static piezoelectric equation without considering the dynamic effect caused by strong impact and the influence of crack propagation on material properties.So the ignition parameters are always not accurately predicted.To tackle this,a PZT dynamic damage constitutive model considering crack propagation is established based on the dynamic impact test and the crack propagation theory of brittle materials.The model is then embedded into the ABAQUS subroutine and used to simulate the electromechanical response of the impact igniter during the impact of a small caliber projectile on the target.Meanwhile,the experiments of projectile with impact igniter impact on the target are carried out.The comparison between experimental and numerical simulation results show that the established dynamic damage model can effectively predict the dynamic electromechanical response of PZTs in the missile service environment. 展开更多
关键词 Piezoelectric ceramics IMPACT IGNITER Dynamic damage constitutive model Electromechanical response
下载PDF
An extended micromechanical-based plastic damage model for understanding water effects on quasi-brittle rocks
7
作者 Qiaojuan Yu Shigui Du +3 位作者 Qizhi Zhu Zhanyou Luo Sili Liu Lunyang Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期289-304,共16页
Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechani... Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechanisms of water-related micro-crack and the constitutive behaviors of rocks.In this work,we shall propose an extended micromechanical-based plastic damage model for understanding weakening effect induced by the presence of water between micro-crack’s surfaces on quasi-brittle rocks,based on the Mori-Tanaka homogenization and irreversible thermodynamics framework.Regarding the physical mechanism,water strengthens micro-crack propagation,which induces damage evolution during the pre-and post-stage,and weakens the elastic effective properties of rock matrix.After proposing a special calibration procedure for the determination of model parameters based on the laboratory compression tests,the proposed micromechanical-based model is verified by comparing the model predictions to the experimental results.The model effectively captures the mechanical behaviors of quasibrittle rocks subjected to the weakening effects of water. 展开更多
关键词 Water MICRO-CRACK damage MICRO-MECHANICS constitutive model Cohesive force
下载PDF
A damage constitutive model of rock-like materials containing a single crack under the action of chemical corrosion and uniaxial compression 被引量:11
8
作者 PAN Ji-liang CAI Mei-feng +1 位作者 LI Peng GUO Qi-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第2期486-498,共13页
To describe the deformation and strength characteristics of the corroded rock-like specimens containing a single crack under uniaxial compression,a damage constitutive model combining hydro-chemical damage with coupli... To describe the deformation and strength characteristics of the corroded rock-like specimens containing a single crack under uniaxial compression,a damage constitutive model combining hydro-chemical damage with coupling damage of micro-flaws and macro-cracks is proposed.Firstly,based on phenomenological theory,the damage variable of the rock-like specimens subjected to water environment erosion and chemical corrosion is obtained.Secondly,a coupled damage variable for cracked rock-like specimens is derived based on the Lemaitre strain equivalence hypothesis,which combines the Weibull statistical damage model for micro-flaws and the fracture mechanics model for a macro single crack.Then,considering the residual strength characteristics of the rock-like materials,the damage variable is modified by introducing the correction coefficient,and the damage constitutive model of the corroded rock-like specimens with a single crack under uniaxial compression is established.The model is verified by comparing the experimental stress−strain curves,and the results are in good agreement with those provided in the literature.Finally,the correction coefficient of the damage variable proposed in this paper is discussed.The damage constitutive model developed in this paper provides an effective method to describe the stress−strain relationship and residual strength characteristics of the corroded rock-like specimens with a single crack under uniaxial compression. 展开更多
关键词 rock-like material single-cracked rock damage constitutive model hydro-chemical erosion residual strength damage variable
下载PDF
Damage constitutive model for strain-softening rock based on normal distribution and its parameter determination 被引量:14
9
作者 曹文贵 李翔 赵衡 《Journal of Central South University of Technology》 EI 2007年第5期719-724,共6页
Firstly, using the damage model for rock based on Lemaitre hypothesis about strain equivalence, a new technique for measuring strength of rock micro-cells by adopting the Mohr-Coulomb criterion was developed, and a st... Firstly, using the damage model for rock based on Lemaitre hypothesis about strain equivalence, a new technique for measuring strength of rock micro-cells by adopting the Mohr-Coulomb criterion was developed, and a statistical damage evolution equation was established based on the property that strength of micro-cells is consistent with normal distribution function, through discussing the characteristics of random distributions for strength of micro-cells, then a statistical damage constitutive model that can simulate the full process of rock strain softening under specific confining pressure was set up. Secondly, a new method to determine the model parameters which can be applied to the situations under different confining pressures was proposed, by deeply studying the relations between the model parameters and characteristic parameters of the full stress-strain curve under different confining pressures. Therefore, a unified statistical damage constitutive model for rock softening which can reflect the effect of different confining pressures was set up. This model makes the physical property of model parameters explicit, contains only conventional mechanical parameters, and leads its application more convenient. Finally, the rationality of this model and its parameters-determining method were identified via comparative analyses between theoretical and experimental curves. 展开更多
关键词 constitutive model ROCK damage strain softening normal distribution
下载PDF
Study on damages constitutive model of rocks based on lognormal distribution 被引量:12
10
作者 李树春 许江 +1 位作者 陶云奇 唐晓军 《Journal of Coal Science & Engineering(China)》 2007年第4期430-433,共4页
The damage constitutive relation of entire rock failure process was established using the theory of representative volume element obeying the Iognormal distribution law, and the integrated damages constitutive model o... The damage constitutive relation of entire rock failure process was established using the theory of representative volume element obeying the Iognormal distribution law, and the integrated damages constitutive model of rock under triaxial compression was established. Comparing with triaxial compression test result, it shows that this model correctly reflects the relationship of stress-strain. At the same time, according to the principle of the rock fatigue failure that conforms to completely the static entire process curve, a new method of establishing cyclic fatigue damage evolution equation was discussed, this method form is simple and the physics significance is clear, it may join preferably the damage relations of the rock static entire process curve. 展开更多
关键词 constitutive model ROCK damage FATIGUE
下载PDF
Acoustic emission activity in directly tensile test on marble specimens and its tensile damage constitutive model 被引量:12
11
作者 Ruifu Yuan Bowen Shi 《International Journal of Coal Science & Technology》 EI 2018年第3期295-304,共10页
For understanding acoustic emission (AE) activity and accumulation of micro-damage inside rock under pure tensile state, the AE signals has been monitored on the test of directly tension on two kinds of marble speci... For understanding acoustic emission (AE) activity and accumulation of micro-damage inside rock under pure tensile state, the AE signals has been monitored on the test of directly tension on two kinds of marble specimens. A tensile constitutive model was proposed with the damage factor calculated by AE energy rate. The tensile strength of marble was discrete obviously and was sensitive to the inside microdefects and grain composition. With increasing of loading, the tensile stress-strain curve obviously showed nonlinear with the tensile tangent modulus decreasing. In repeated loading cycle, the tensile elastic modulus was less than that in the previous loading cycle because of the generation of micro damage during the prior loading. It means the linear weakening occurring in the specimens. The AE activity was corresponding with occurrence of nonlinear deformation. In the initial loading stage which only elastic deformation happened on the specimens, there were few AE events occurred; while when the nonlinear deformation happened with increasing of loading, lots of AE events were generated. The quantity and energy of AE events were proportionally related to the variation of tensile tangent modulus. The Kaiser effect of AE activity could be clearly observed in tensile cycle loading. Based on the theory of damage mechanics, the damage factor was defined by AE energy rate and the tensile damage constitutive model was proposed which only needed two property constants. The theoretical stress-strain curve was well fitted with the curve plotted with tested datum and the two property constants were easily gotten by the laboratory testing. 展开更多
关键词 Marble specimens Direct tensile test Acoustic emission Tensile tangent modulus damage constitutive model
下载PDF
Statistical damage constitutive model for concrete materials under uniaxial compression 被引量:4
12
作者 白卫峰 陈健云 +1 位作者 范书立 林皋 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第3期338-344,共7页
According to the damage mechanism of concrete material during the uniaxial compressive failure process,this paper further establishes the statistical damage constitutive model of concrete subjected to uniaxial compres... According to the damage mechanism of concrete material during the uniaxial compressive failure process,this paper further establishes the statistical damage constitutive model of concrete subjected to uniaxial compressive stress based on the statistical damage model under uniaxial tension. The damage evolution law in the direction subjected to pressure is confirmed by the tensile damage evolution process of lateral deformation due to the Poisson effect,and then the compressive stress-strain relationship is defined. The peak nominal stress state and the critical state occurring in the macro longitudinal distributed splitting cracks are distinguished. The whole loading process can be divided into the even damage phase and the local breakage phase. The concrete specimen is divided into the failure process zone and the resting unloading zone. The size effects during the local breakage phase under the uniaxial monotonic compressive process and the hysteretic phenomenon under the cyclic compressive loading process are analyzed. Finally,the comparison between theoretical results and experimental results preliminarily verifies the rationality and feasibility of understanding the failure mechanism of concrete through the statistical damage constitutional law. 展开更多
关键词 uniaxial compression constitutive model mesoscopic damage evolution strain softening size effects
下载PDF
Damage characteristics and new constitutive model of sandstone under wet–dry cycles 被引量:4
13
作者 HUANG Zhen ZHANG Wei +2 位作者 ZHANG Hai ZHANG Jia-bing HU Zhao-jian 《Journal of Mountain Science》 SCIE CSCD 2022年第7期2111-2125,共15页
The mechanical properties of rock deteriorate under repeated wet-dry(WD)cycles,causing the deformation and failure of the rock mass.A reasonable damage constitutive model can truly reflect the whole process of rock de... The mechanical properties of rock deteriorate under repeated wet-dry(WD)cycles,causing the deformation and failure of the rock mass.A reasonable damage constitutive model can truly reflect the whole process of rock deformation and failure.Therefore,it is of great significance to study the damage characteristics and constitutive behaviour of rock subjected to numerous WD cycles.First,sandstone from Tingliang tunnel was sampled for the WD cycle experiment,and uniaxial and triaxial tests were carried out on the rock samples after various numbers of WD cycles to analyze their macroscale damage characteristics.Then,the damage mechanisms of the rock samples under the action of WD cycling were identified by X-ray diffraction(XRD)and scanning electron microscopy(SEM).Finally,based on the test data,the WD cycle-induced damage variable,Weibull distribution function,damage threshold,Drucker-Prager(D-P)yield criterion and residual strength correction coefficient were introduced,a wet-dry loading(WDL)constitutive damage model that considers the cracking stress of rock masses was established,and the expressions of the corresponding parameters were given.The results show that an increasing number of WD cycles induces considerable variations in the macroscopic physical and mechanical parameters(such as the rock sample mass,saturated water content,longitudinal-wave velocity,compressive strength and elastic modulus),and the rate of change presents two stages,the inflection point of their rate of change is the 15th WD cycle.Microscopically,the rock sample structure changes from intact and dense to fragmented and unconsolidated;additionally,the surface roughness increases,and the mineral composition changes.The established constitutive damage model exhibited good agreement with the experimental data;thus,this model can reflect the deformation and failure of rocks under WDL conditions,and the physical meaning of each parameter is clear. 展开更多
关键词 Wet-dry cycle SANDSTONE Rock damage constitutive model
下载PDF
Viscoplastic Damage-Softening Constitutive Model for Concrete Subjected to Uniaxial Dynamic Compression 被引量:2
14
作者 Xiaowang Sun Yongchi Li +2 位作者 Ruiyuan Huang Zhongbao Ye Kai Zhao 《Journal of Beijing Institute of Technology》 EI CAS 2017年第4期427-433,共7页
A new viscoplastic damage-softening constitutive model is presented. It is developed by integrating a Bodner-Partom viscoplastic model with a newdamage evolution equation. A set of ordinary differential equations( O... A new viscoplastic damage-softening constitutive model is presented. It is developed by integrating a Bodner-Partom viscoplastic model with a newdamage evolution equation. A set of ordinary differential equations( ODEs) is formulated,and a Runge-Kutta integral method is used to get stress-strain curves given by the model. Also,stress-strain curves of a wide range of strain-rates for concrete were obtained by split Hopkinson pressure bar( SHPB) tests. By fitting the integral stressstrain curves to the experimental ones with the least square optimization method,we determined the material parameters in our model. Some properties of the newmodel,such as strain-rate sensitivity,damage evolution characteristics,strain-rate jump effects and unloading feature,are explored.These results showthat our new model can describe dynamic behaviors of concrete very well,and our integrating-fitting-optimizing method to get material parameters is valid. 展开更多
关键词 constitutive model damage evolution strain-rate sensitivity dynamic behavior of concrete
下载PDF
INVESTIGATION ON GRADIENT-DEPENDENT NONLOCAL CONSTITUTIVE MODELS FOR ELASTO-PLASTICITY COUPLED WITH DAMAGE 被引量:1
15
作者 沈新普 沈国晓 +1 位作者 陈立新 杨璐 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第2期218-233,共16页
Firstly, typical) gradient-dependent nonlocal inelastic models were briefly reviewed. Secondly, based on the principle of ‘gradient-dependent energy dissipation', a gradient-dependent constitutive model for plast... Firstly, typical) gradient-dependent nonlocal inelastic models were briefly reviewed. Secondly, based on the principle of ‘gradient-dependent energy dissipation', a gradient-dependent constitutive model for plasticity coupled with isotropic damage was presented in the framework of continuum thermodynamics. Numerical scheme for calculation of Laplacian term of damage field with the numerical results obtained by FEM calculation was proposed. Equations have been presented on the basis of Taylor series for both 2-dimensional and 3-dimensional cases, respectively. Numerical results have indicated the validity of the proposed gradient-dependent model and corresponding numerical scheme. 展开更多
关键词 damage PLASTICITY NONLOCAL constitutive model gradient-dependent
下载PDF
An elasto-plastic and viscoplastic damage constitutive model for dilatancy and fracturing behavior of soft rock squeezing deformation 被引量:1
16
作者 HUANG Xing LIU Quan-sheng +3 位作者 BO Yin LIU Bin DING Zi-wei ZHANG Quan-tai 《Journal of Mountain Science》 SCIE CSCD 2022年第3期826-848,共23页
Soft rock squeezing deformation mainly consists of pre-peak damage-dilatancy and post-peak fracture-bulking at the excavation unloading instant,and creep-dilatancy caused by time-dependent damage and fracturing.Based ... Soft rock squeezing deformation mainly consists of pre-peak damage-dilatancy and post-peak fracture-bulking at the excavation unloading instant,and creep-dilatancy caused by time-dependent damage and fracturing.Based on the classic elastoplastic and Perzyna over-stress viscoplastic theories,as well as triaxial unloading confining pressure test and triaxial unloading creep test results,an elastoplastic and viscoplastic damage constitutive model is established for the short-and long-term dilatancy and fracturing behavior of soft rock squeezing deformation.Firstly,the criteria for each deformation and failure stage are expressed as a linear function of confining pressure.Secondly,the total damage evolution equation considering time-dependent damage is proposed,including the initial damage produced at the excavation instant,in which the damage variable increases exponentially with the lateral strain,and creep damage.Thirdly,a transient five-stages elasto-plastic constitutive equation for the short-term deformation after excavation that comprised of elasticity,pre-peak damage-dilatancy,post-peak brittle-drop,linear strain-softening,and residual perfectly-plastic regimes is developed based on incremental elasto-plastic theory and the nonassociated flow rule.Fourthly,regarding the timedependent properties of soft rock,based on the Perzyna viscoplastic over-stress theory,a viscoplastic damage model is set up to capture creep damage and dilatancy behavior.Viscoplastic strain is produced when the stress exceeds the initial static yield surface fs;the distance between the static yield surface fs and the dynamic yield surface fd determines the viscoplastic strain rate.Finally,the established constitutive model is numerically implemented and field applied to the-848 m belt conveyer haulage roadway of Huainan Panyidong Coal Mine.Laboratory test results and in-situ monitoring results validate the rationality of the established constitutive model.The presented model takes both the transient and time-dependent damage and fracturing into consideration. 展开更多
关键词 Soft rock Squeezing deformation damage DILATANCY FRACTURING Elasto-plastic and viscoplastic damage constitutive model
下载PDF
Static compressive properties and damage constitutive model of rubber cement mortar with dry-and wet-curing conditions 被引量:1
17
作者 YANG Rong-zhou XU Ying +1 位作者 CHEN Pei-yuan GONG Jiu 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第7期2158-2178,共21页
To investigate the static compressive properties and mechanical damage evolution of rubber cement-based materials(RCBMs) with dry-and wet-curing conditions, uniaxial compression and cyclic loading-unloading tests were... To investigate the static compressive properties and mechanical damage evolution of rubber cement-based materials(RCBMs) with dry-and wet-curing conditions, uniaxial compression and cyclic loading-unloading tests were carried out on rubber cement mortar(RCM). The mechanical properties of the uniaxial compression specimens cured at 95%(wet-curing) and 50%(dry-curing) relative humidities and cyclic loading-unloading specimens cured at wet-curing were analyzed. Under uniaxial compression, the peak stress loss ratio is higher for dry-curing than for wet-curing. The peak strain decreases with the increase of rubber content, and the peak strain increases with the decrease of curing humidity. Under cyclic loading-unloading, the variation trends of residual strain differences of the normal cement mortar and RCM at each cyclic level with the number of cycles are basically the same, but the failure modes are different. The analysis of the internal mesostructure by a scanning electron microscope(SEM) shows that initial damage is further enhanced by reducing curing humidity and adding rubber aggregate. The damage constitutive model based on strain equivalence principle and statistical theories was used to describe the uniaxial compression characteristics of RCM, and the law of mechanical damage evolution was predicted. 展开更多
关键词 curing humidity rubber cement mortar uniaxial compression cyclic loading-unloading mesoscopic damage constitutive model
下载PDF
An Elastoplastic Damage Constitutive Model for Concrete 被引量:1
18
作者 刘军 林皋 钟红 《China Ocean Engineering》 SCIE EI CSCD 2013年第2期169-182,共14页
An elastoplastic damage constitutive model to simulate nonlinear behavior of concrete is presented. Similar to traditional plastic theory, the irreversible deformation is modeled in effective stress space. In order to... An elastoplastic damage constitutive model to simulate nonlinear behavior of concrete is presented. Similar to traditional plastic theory, the irreversible deformation is modeled in effective stress space. In order to better describe different stiffness degradation mechanisms of concrete under tensile and compressive loading conditions, two damage variables, i.e., tension and compression are introduced, to quantitatively evaluate the degree of deterioration of concrete structure. The rate dependent behavior is taken into account, and this model is derived firmly in the framework of irreversible thermodynamics. Fully implicit backward-Euler algorithm is suggested to perform constitutive integration. Numerical results of the model accord well with the test results for specimens under uniaxial tension and compression, biaxial loading and triaxial loading. Failure processes of double-edge-notched (DEN) specimen are also simulated to further validate the proposed model. 展开更多
关键词 constitutive model elastoplastic-damage irreversible thermodynamics energy release rate CONCRETE
下载PDF
INVESTIGATION ON ELASTO-PLASTIC CONSTITUTIVE MODEL COUPLED WITH DAMAGE FOR LOCALIZATION PHENOMENA
19
作者 沈新普 沈国晓 陈立新 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第12期1365-1373,共9页
On the basis of existing plasticity-based damage model for plasticity coupled with damage for localization analysis, constitutive parameter identification was carried out through a series of numerical tests at local l... On the basis of existing plasticity-based damage model for plasticity coupled with damage for localization analysis, constitutive parameter identification was carried out through a series of numerical tests at local level.And then improvements were made on the expressions of the evolution laws of damage. Strain localization phenomena were simulated with a typical double-notched specimen under tensions. Numerical results indicate the validity of the proposed theory. 展开更多
关键词 damage PLASTICITY LOCALIZATION constitutive model
下载PDF
Experimental study of the damage characteristics of rocks containing non-penetrating cracks under cyclic loading
20
作者 Jun Xu Xiaochun Xiao +3 位作者 Lu Ma Sen Luo Jiaxu Jin Baijian Wu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期197-210,共14页
The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics ... The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics under cyclic loading.The results show that under cyclic loading,the relationship between the number of non-penetrating crack(s)and the characteristic parameters(cyclic number,peak stress,peak strain,failure stress,and failure strain)of the pre-cracked specimens can be represented by a decreasing linear function.The damage evolution equation is fitted by calibrating the accumulative plastic strain for each cycle,and the damage constitutive equation is proposed by the concept of effective stress.Additionally,non-penetrating cracks are more likely to cause uneven stress distribution,damage accumulation,and local failure of specimen.The local failure can change the stress distribution and relieve the inhibition of non-penetrating crack extension and eventually cause a dramatic destruction of the specimen.Therefore,the evolution process caused by non-penetrating cracks can be regarded as one of the important reasons for inducing rockburst.These results are expected to improve the understanding of the process of spalling formation and rockburst and can be used to analyze the stability of rocks or rock structures. 展开更多
关键词 damage characteristics constitutive model Fissured rocks Non-penetrating crack Cyclic loading
下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部