During the tunnel construction process,unfavorable geological conditionsare often encountered.Geological disasters such as collapse,roof fall,water inrush,gas explosion,etc.occur frequently,causing different degrees o...During the tunnel construction process,unfavorable geological conditionsare often encountered.Geological disasters such as collapse,roof fall,water inrush,gas explosion,etc.occur frequently,causing different degrees of property damage and casualties to the construction of the tunnel,seriously affecting harmony during construction.The domestic emergency hedging is mainly the use of 8-10mm steel coils,but the steel is heavy and not suitable for the frequent movement of tunnels.This paper introduces the new Glass Fiber Reinforced Polymer Composite(GFRPC)escape pipeline used in Chongqing Jiuyongyi Jinyunshan Tunnel,and compares the traditional steel coil parameters to provide reference for subsequent tunnel hedging measures.展开更多
To find out the local buckling behaviors of glass fiber reinforced plastic(GFRP)-foam sandwich pipe suffering axial loading,a series of quasi-static axial compression tests are carried out in the laboratory.Comparing ...To find out the local buckling behaviors of glass fiber reinforced plastic(GFRP)-foam sandwich pipe suffering axial loading,a series of quasi-static axial compression tests are carried out in the laboratory.Comparing with the test data,systematic numerical analysis on the local buckling behavior of this sandwich pipe is also conducted,and the buckling failure mechanism is revealed.The influences of the key parameters on bearing capacity of the sandwich structure are discussed.Test and numerical results show that the local buckling failure of the GFRPfoam sandwich pipe is dominated basically by two typical modes,i.e.,the conjoint buckling and the layered buckling.Local buckling at the end,shear failure at the end and interface peeling failure are less efficient than the local buckling failure at the middle height,and ought to be restrained by appropriate structural measures.The local buckling bearing capacity increases linearly with the core density of the sandwich pipe structure.When the core density is relatively high(higher than 0.05 g/cm3),the effect of increasing the core density on improving the bearing efficiency is less on the specimens with a large ratio of the wall thickness to the radius than on those with a small one.Local layered buckling is another failure mode with lower bearing efficiency than the local conjoint buckling,and it can be restrained by increasing the core density to ensure the cooperation of the inner and the outer GFRP surface layer.The bearing capacity of the GFRP-foam sandwich pipe increases with the height-diameter ratio;however,the bearing efficiency decreases with this parameter.展开更多
纤维增强聚合物筋是一种新型复合材料,具有优异的力学性能和耐腐蚀性能,用其替代钢筋用于边坡加固是解决锚杆耐久性问题的途径之一。采用内置光纤光栅的GFRP筋制作锚杆结构模型,用空心液压千斤顶施加拉拔荷载,用光栅传感技术监测杆体应...纤维增强聚合物筋是一种新型复合材料,具有优异的力学性能和耐腐蚀性能,用其替代钢筋用于边坡加固是解决锚杆耐久性问题的途径之一。采用内置光纤光栅的GFRP筋制作锚杆结构模型,用空心液压千斤顶施加拉拔荷载,用光栅传感技术监测杆体应变,研究大直径喷砂GFRP锚杆在框架梁锚固条件下的受力破坏机制。研究表明,本试验大直径25 mm GFRP锚杆在拉拔力、平均黏结强度方面均达到相同直径螺纹钢筋锚杆的设计指标,最合理的框架梁厚度为30~40 cm;瞬时荷载循环对GFRP锚杆界面黏结状态无明显影响;持续荷载作用下杆体界面的黏结状态会发生蜕化,随时间延续蜕化向深部扩展,荷载越大扩展深度越大,蜕化速度越快;光纤光栅监测技术是发现和观察锚杆界面黏结状态蜕化过程的有效手段。展开更多
文摘During the tunnel construction process,unfavorable geological conditionsare often encountered.Geological disasters such as collapse,roof fall,water inrush,gas explosion,etc.occur frequently,causing different degrees of property damage and casualties to the construction of the tunnel,seriously affecting harmony during construction.The domestic emergency hedging is mainly the use of 8-10mm steel coils,but the steel is heavy and not suitable for the frequent movement of tunnels.This paper introduces the new Glass Fiber Reinforced Polymer Composite(GFRPC)escape pipeline used in Chongqing Jiuyongyi Jinyunshan Tunnel,and compares the traditional steel coil parameters to provide reference for subsequent tunnel hedging measures.
基金supported by the National Key R&D Program of China(No.2017YFC0405103)the Natural Science Foundation of China(No. 51978166)the Construction System Science and Technology Guidance Project of Jiangsu(Nos.2017ZD131,2017ZD132).
文摘To find out the local buckling behaviors of glass fiber reinforced plastic(GFRP)-foam sandwich pipe suffering axial loading,a series of quasi-static axial compression tests are carried out in the laboratory.Comparing with the test data,systematic numerical analysis on the local buckling behavior of this sandwich pipe is also conducted,and the buckling failure mechanism is revealed.The influences of the key parameters on bearing capacity of the sandwich structure are discussed.Test and numerical results show that the local buckling failure of the GFRPfoam sandwich pipe is dominated basically by two typical modes,i.e.,the conjoint buckling and the layered buckling.Local buckling at the end,shear failure at the end and interface peeling failure are less efficient than the local buckling failure at the middle height,and ought to be restrained by appropriate structural measures.The local buckling bearing capacity increases linearly with the core density of the sandwich pipe structure.When the core density is relatively high(higher than 0.05 g/cm3),the effect of increasing the core density on improving the bearing efficiency is less on the specimens with a large ratio of the wall thickness to the radius than on those with a small one.Local layered buckling is another failure mode with lower bearing efficiency than the local conjoint buckling,and it can be restrained by increasing the core density to ensure the cooperation of the inner and the outer GFRP surface layer.The bearing capacity of the GFRP-foam sandwich pipe increases with the height-diameter ratio;however,the bearing efficiency decreases with this parameter.
文摘纤维增强聚合物筋是一种新型复合材料,具有优异的力学性能和耐腐蚀性能,用其替代钢筋用于边坡加固是解决锚杆耐久性问题的途径之一。采用内置光纤光栅的GFRP筋制作锚杆结构模型,用空心液压千斤顶施加拉拔荷载,用光栅传感技术监测杆体应变,研究大直径喷砂GFRP锚杆在框架梁锚固条件下的受力破坏机制。研究表明,本试验大直径25 mm GFRP锚杆在拉拔力、平均黏结强度方面均达到相同直径螺纹钢筋锚杆的设计指标,最合理的框架梁厚度为30~40 cm;瞬时荷载循环对GFRP锚杆界面黏结状态无明显影响;持续荷载作用下杆体界面的黏结状态会发生蜕化,随时间延续蜕化向深部扩展,荷载越大扩展深度越大,蜕化速度越快;光纤光栅监测技术是发现和观察锚杆界面黏结状态蜕化过程的有效手段。