The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestre...The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design.展开更多
In consideration that behavior of curvature ductility of interior support directly influences the degree of moment modification of unbonded prestressed concrete (UPC) continuous structures, constitutive relationships ...In consideration that behavior of curvature ductility of interior support directly influences the degree of moment modification of unbonded prestressed concrete (UPC) continuous structures, constitutive relationships of concrete, non-prestressed reinforcement and prestressed reinforcement used for nonlinear analysis are given. Through simulation analysis on simple beams subjected to single loading at the middle of the span, the law of factors influencing curvature ductility, such as global reinforcing index, prestressing degree, effective prestress, strength of concrete and grade of non-prestressed reinforcement are explored. Based on these researches, calculating formula of curvature ductility coefficient of UPC beams is established, which provides basic data for further research on plastic design of UPC indeterminate structures.展开更多
文摘The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design.
文摘In consideration that behavior of curvature ductility of interior support directly influences the degree of moment modification of unbonded prestressed concrete (UPC) continuous structures, constitutive relationships of concrete, non-prestressed reinforcement and prestressed reinforcement used for nonlinear analysis are given. Through simulation analysis on simple beams subjected to single loading at the middle of the span, the law of factors influencing curvature ductility, such as global reinforcing index, prestressing degree, effective prestress, strength of concrete and grade of non-prestressed reinforcement are explored. Based on these researches, calculating formula of curvature ductility coefficient of UPC beams is established, which provides basic data for further research on plastic design of UPC indeterminate structures.