The valence bond structure of substitutional BCC based Ta-W alloys is studied using characteristic crystal (CC) theory. This theory is based on cluster statistics of random alloys. By studying the correlativity betw...The valence bond structure of substitutional BCC based Ta-W alloys is studied using characteristic crystal (CC) theory. This theory is based on cluster statistics of random alloys. By studying the correlativity between energy and volume of the CC in Ta- W alloys, the valence bond structure of CC is determined by the energy and shape method. Then, following additive law of CC, the valence bond structure of Ta-W alloys is calculated. It is found that the outer shell valence electronic distribution of Ta-W Mloys shows a continuous change in the whole composition range. The covalent electrons ec (dc, sc, and pc) increase, whereas near free electrons ef decrease with increasing W concentration. The bond length and single-bond radius decrease, whereas bond energy and bond valence increase with increasing W concentration. The mechanism of solid solution strengthening of Ta-W alloys is analyzed based on their valence bond structure.展开更多
On the basis of energy and shape method for the determination of the valence bond ( VB ) structures of crystal, the valence bond structure of titanium is redetermined at room temperature and calculated in the whole ...On the basis of energy and shape method for the determination of the valence bond ( VB ) structures of crystal, the valence bond structure of titanium is redetermined at room temperature and calculated in the whole temperature range of 0-1943K. The outer shell electronic distribution of Ti is ec^29907. (sc^0.4980 + dc^2.4927) ef^1.0098 in crystal. The temperature dependences of the VB structures of hcp and bcc phases are the same. The VB structures of hcp and bcc phases monotonically increase or decrease with the increase in temperature, but show discontinuous changes at the phase-transformation temperature 1155K.展开更多
The relationship between bond valence and bond covalency in RMn2O5 (R = La, Pr, Nd.Sm, Eu) has been investigated by a semiempirical method. This method is the generalization of thedielectric description theory of Phil...The relationship between bond valence and bond covalency in RMn2O5 (R = La, Pr, Nd.Sm, Eu) has been investigated by a semiempirical method. This method is the generalization of thedielectric description theory of Phillips. Van Vechten, Levine and Tanaka scheme. The resultsindicate that larger valences usually result in higher bond covalencies, in good agreement with thepoint that the excess charge in the bonding region is the origin of formation of bond covalency.Other factors, such as oxidation state of elements, only make a small contribution to bondcovalency.展开更多
The concept of resonance-assisted hydrogen bonds(RAHBs)highlights the synergistic interplay between theπ-resonance and hydrogen bonding interactions.This concept has been well-accepted in academia and is widely used ...The concept of resonance-assisted hydrogen bonds(RAHBs)highlights the synergistic interplay between theπ-resonance and hydrogen bonding interactions.This concept has been well-accepted in academia and is widely used in practice.However,it has been argued that the seemingly enhanced intramolecular hydrogen bonding(IMHB)in unsaturated compounds may simply be a result of the constraints imposed by theσ-skeleton framework.Thus,it is crucial to estimate the strength of IMHBs.In this work,we used two approaches to probe the resonance effect and estimate the strength of the IMHBs in the two exemplary cases of the enol forms of acetylacetone and o-hydroxyacetophenone.One approach is the block-localized wavefunction(BLW)method,which is a variant of the ab initio valence bond(VB)theory.Using this approach,it is possible to derive the geometries and energetics with resonance shut down.The other approach is Edmiston’s truncated localized molecular orbital(TLMO)technique,which monitors the energy changes by removing the delocalization tails from localized molecular orbitals.The integrated BLW and TLMO studies confirmed that the hydrogen bonding in these two molecules is indeed enhanced byπ-resonance,and that this enhancement is not a result ofσconstraints.展开更多
We present here a systematic theoretical study to explore the underlying mechanisms of the H abstraction reaction from methane. Various abstracting agents have been modeled, using oxygen radicals and a set of high val...We present here a systematic theoretical study to explore the underlying mechanisms of the H abstraction reaction from methane. Various abstracting agents have been modeled, using oxygen radicals and a set of high valence metal oxo compounds. Our calculations demonstrate that although H abstraction from CH3-H by metal oxoes can be satisfactorily fitted into the Polanyi correlation on the basis of oxygen radicals, the mechanisms behind are significantly different. The frontier orbital analyses show that there are three electrons and three active orbitals (3e, 3o) involved in H abstraction by oxygen radicals; whereas an additional orbital of pi(M-O)* is involved in H abstraction by M = O, resulting in a (4e, 4o) interaction. In terms of valence bond state correlation diagram, we find that H abstraction by a metal oxo may benefit from the contribution of ionic resonance structures, which could compensate the penalty of opening the M-O pbond. We believe that these findings can help to design more effective catalysts for the activation of light alkanes. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B. V. and Science Press. All rights reserved.展开更多
The excited-state intramolecular hydrogen abstraction reactions of butanal have been investigated using the CAS-MP2/6-311+G^*//CASSCF/6-31G^* methods. Calculated results show that the hydrogen transfer induced fluo...The excited-state intramolecular hydrogen abstraction reactions of butanal have been investigated using the CAS-MP2/6-311+G^*//CASSCF/6-31G^* methods. Calculated results show that the hydrogen transfer induced fluorescence quenching of the n,π^*-excited state of covalent butanal with three paths: (1) The first path corresponds to direct S0-react reconstitution, which involves the first S1 decay by partial hydrogen atom transfer. (2) The second stepwise mechanism can be viewed as a full hydrogen atom transfer followed by a partial hydrogen atom back transfer, electron transfer (near S1/S0 or S0-TS) and finally a proton transfer to S0-react. (3) On the triplet surface, the surface crossing to the singlet state would be clearly much efficient at the T1/S0 region due to the large SOC value of 8.3 cm^-1. The S0-react decay route from T1/S0 was studied with an intrinsic reaction coordinate (IRC) calculation at the CASSCF level, resulting in the S0-React minimum.展开更多
Bond valence method illustrates the relation between valence and length of a particular bond type. This theory has been used to predict structure information, but the effect is very limited. In this paper, two indexes...Bond valence method illustrates the relation between valence and length of a particular bond type. This theory has been used to predict structure information, but the effect is very limited. In this paper, two indexes, i.e., global instability index(GII) and bond strain index(BSI), are adopted as a judgment of a search-match program for prediction. The results show that with GII and BSI combined as judgment, the predicted atom positions are very close to real ones. The mechanism and validity of this searching program are also discussed. The GII & BSI distribution contour map reveals that the predicted function is a reflection of exponential feature of bond valence formula. This combined searching method may be integrated with other structure-determination method, and may be helpful in refining and testifying light atom positions.展开更多
The influence of the lone pair of electrons in thallium complexes is analyzed using the bond valence sum method.Bond length data for metal-organic Tl complexes were obtained from the Cambridge Structural Database(CSD...The influence of the lone pair of electrons in thallium complexes is analyzed using the bond valence sum method.Bond length data for metal-organic Tl complexes were obtained from the Cambridge Structural Database(CSD),and problems with searching the CSD file for Tl complexes are discussed.The recommended R0 values for Tl(Ⅰ)-O of 2.162 ,Tl(Ⅲ)-O of 2.016 ,Tl(Ⅰ)-N of 2.286 ?,and for Tl(Ⅲ)-N of 2.014 used with b = 0.37 were derived from analyses of homoleptic Tl-O,Tl-N,and heteroleptic Tl-O and-N metal organic complexes.These R0 values can be used to assign correctly the oxidation state of Tl in complexes containing any combination of Tl-O or Tl-N bonds.Examples of questionable oxidation states for Tl complexes are given.The R0 value for Tl(Ⅲ)-Cl of 2.300 was also determined.展开更多
The present paper covers a kind of localized orbitals, namely bond-distorted or-bitals in the valence bond calculation. Test calculation on benzene is reported. The results indicate that Dewar structures are important...The present paper covers a kind of localized orbitals, namely bond-distorted or-bitals in the valence bond calculation. Test calculation on benzene is reported. The results indicate that Dewar structures are important in the description of benzene.展开更多
Introduction There has been a very significarnt resurgence of interest in ab initio valence bond calculations recently. This is because the VB calculation based on nonorthogonal basis can provide intuitive understandi...Introduction There has been a very significarnt resurgence of interest in ab initio valence bond calculations recently. This is because the VB calculation based on nonorthogonal basis can provide intuitive understanding about many very important phenomena in chemistry. However, practical calculation based on nonorthogonal basis is still a great challenge even to deal with a quite small system due to the well-known N! (or展开更多
Planar cations or anions can form stacks in crystals or solutions,where the surrounding or environment plays a decisive role as demonstrated in previous studies.However,it remains unclear whether these counterintuitiv...Planar cations or anions can form stacks in crystals or solutions,where the surrounding or environment plays a decisive role as demonstrated in previous studies.However,it remains unclear whether these counterintuitive interactions possess any inherent stability or are thoroughly repulsive if the constraint of environment is removed.In this work,we explored the inherent stability ofπ-πstacking between closed-shell ions of like charges with prototypes derived from experimental studies.The inherent metastability was identified by the characteristic local minima and the transition states preventing their dissociation and verified by ab initio molecular dynamics(AIMD)simulations.The nature of involved interactions was deciphered with the energy decomposition approach based on the block-localized wavefunction method(BLW-ED).Like the conventional neutralπ-πstacking interactions,electron correlation is the most attractive energy component.But it is overturned by the Coulombic repulsion between net charges for all modes of dimerization,resulting in the overall repulsive inter-cation or anion in-teractions.Contributions from van der Waals interactions were also observed in the reduced density gradient analysis.The origin of the metastability was elucidated by examining the contributions of individual physical factors to the well-depths.The inherent metastability originates from the electron correlation,which dramatically increases due to the enhanced overlap between ions from a transition state to its corresponding minimum.展开更多
Inorganic solid electrolytes have distinguished advantages in terms of safety and stability, and are promising to substitute for conventional organic liquid electrolytes. However, low ionic conductivity of typical can...Inorganic solid electrolytes have distinguished advantages in terms of safety and stability, and are promising to substitute for conventional organic liquid electrolytes. However, low ionic conductivity of typical candidates is the key problem. As connective diffusion path is the prerequisite for high performance, we screen for possible solid electrolytes from the 2004 International Centre for Diffraction Data (ICDD) database by calculating conduction pathways using Bond Valence (BV) method. There are 109846 inorganic crystals in the 2004 ICDD database, and 5295 of them contain lithium. Except for those with toxic, radioactive, rare, or variable valence elements, 1380 materials are candidates for solid electrolytes. The rationality of the BV method is approved by comparing the existing solid electrolytes' conduction pathways we had calculated with those from ex- periments or first principle calculations. The implication for doping and substitution, two important ways to improve the conductivity, is also discussed. Among them LizCO3 is selected for a detailed comparison, and the pathway is reproduced well with that based on the density functional studies. To reveal the correlation between connectivity of pathways and conductivity, a/γ-LiAlO2 and Li2CO3 are investigated by the impedance spectrum as an example, and many experimental and theoretical studies are in process to indicate the relationship between property and structure. The BV method can calculate one material within a few minutes, providing an efficient way to lock onto targets from abundant data, and to investigate the struc- ture-property relationship systematically.展开更多
Inorganic solid electrolytes have obvious advantages on safety and electrochemical stability compared to organic liquid electrolytes,but the advance on high ionic conductivity of typical electrolytes is still undergoi...Inorganic solid electrolytes have obvious advantages on safety and electrochemical stability compared to organic liquid electrolytes,but the advance on high ionic conductivity of typical electrolytes is still undergoing.Although the first-principles calculation in the ion migration simulation is an important strategy to develop high-performance solid electrolyte,the process is very time-consuming.Here,we propose an effective method by combining the geometrical analysis and bond valance sum calculation to obtain an approximate minimum energy path preliminarily,in parallel to pave the way for the interoperability of low-precision and high-precision ion transport calculation.Taking a promising electrolyte Li_(3)PS_(4) as an example,we revisit its Li-ionic transport behavior.Our calculated Li-ion pathways and the activation energies(the corresponding values:1.09 eV vs.0.88 eV vs.0.86 eV)in γ-,β- and α-Li_(3)PS_(4) are consistent with the ones obtained from the first-principles calculations.The variations of the position of P-ions lead the rearrangement of the host PS_(4) tetrahedron,affecting the diffusion positions of Li-ions and further enabling high Li^(+) conductivity in β-Li_(3)PS_(4).展开更多
This project aims to attack the frontiers of electronic structure calculations on the excited states of large molecules and molecular aggregates by developing novel theoretical and computational methods. The methodolo...This project aims to attack the frontiers of electronic structure calculations on the excited states of large molecules and molecular aggregates by developing novel theoretical and computational methods. The methodology development is especially based on the time-dependent density functional theory (TDDFT) and valence bond (VB) theory, and is expected to be computationally effective and accurate as well. Research works on the following related subjects will be performed: (1) The analytical energy-derivative approaches for electronically excited state within TDDFT will be developed to reduce bypass the computational costs in the calculation of molecular excited-state properties. (2) The ab initio methods for electronically excited state based on VB theory and hybrid TDDFT-VB method will be developed to overcome the limitations of current TDDFT in simulating photophysics and photochemistry. (3) For larger aggregates, neither ab initio methods nor TDDFT is applicable. We intend to build the effective model Hamiltonian by developing novel theoretical and computational methods to calculate the involved microscopic physical parameters from the first-principles methods. The constructed effective Hamiltonian is then used to describe the excitonic states and excitonic dynamics of the natural or artificial photosynthesized systems, organic or inorganic photovoltaic cell. (4) The condensed phase environment is taken into account by combining the developed theories and algorithms based on TDDFT and VB with the polarizable continuum solvent models (PCM), molecular mechanism (MM), classical electrodynamics (ED) or molecular dynamics (MD) theory. (5) Highly efficient software packages will be designed and developed.展开更多
We prepared (1-x)CaTiO3-xLaAlO3 (0 ≤x≤ 1) microwave dielectric ceramics using a conventional two-step solid-state reaction method,and investigated microwave dielectric properties of the ceramics in terms of A/B-site...We prepared (1-x)CaTiO3-xLaAlO3 (0 ≤x≤ 1) microwave dielectric ceramics using a conventional two-step solid-state reaction method,and investigated microwave dielectric properties of the ceramics in terms of A/B-site ionic-parameters.Ionic-parameters such as ionic polarizability,A-site bond valence,and ionic rattling were linked to the microwave dielectric properties.As the LaAlO3 content x in the (1-x)CaTiO3-xLaAlO3 ceramics increased from 0.3 to 0.7,the dielectric constant gradually decreased,which was attributed to the decrease of polarizability deviation and suppression of the cation rattling.The temperature coefficient of the resonant frequency decreased as the content of LaAlO3 increased because of the increase of A-site cation bond valence.The quality factor value (Q × f) increased as LaAlO3 content increased because of the enhancement of the order degree of B-site cation.A significant deterioration of the temperature coefficient of the resonant frequency and Q ×fvalue was observed at the composition x =0.5.These decreases were attributed to a phase transition from orthorhombic crystal (for x ≤ 0.5) to rhombohedral crystal (for x > 0.5).展开更多
Effects of crystal structures on dielectric properties of ATiO_(3)(trigonal ilmenite),ATa_(2)O_(6)(tetragonal tri-rutile)and AWO_(4)(monoclinic wolframite)(A=Ni,Mg,Co)ceramics with A-and B-site oxygen octahedra were i...Effects of crystal structures on dielectric properties of ATiO_(3)(trigonal ilmenite),ATa_(2)O_(6)(tetragonal tri-rutile)and AWO_(4)(monoclinic wolframite)(A=Ni,Mg,Co)ceramics with A-and B-site oxygen octahedra were investigated at microwave frequencies.The dielectric constant(K) of the specimens was affected by the dielectric polarizabilities of composition and cation bond valence between octahedral cation and oxygen ion per molar volum(V_(m)).The quality factor(Qf)of ATiO_(3)was appreciably larger than those of ATa_(2)O_(6)and AWO_(4)due to the different sharing types of oxygen octahedra.The temperature coe±cient of resonant frequency(TCF)of the specimens was dependent on the octahedral distortion per V_(m).展开更多
The π electronic delocalization in trans-C4H6 and cis-C4H6 has been investigated in the frame of ab initio valence bond theory with 6-31G basis set. The result shows that the Csp2-Csp2 single bond length (1.506 A) is...The π electronic delocalization in trans-C4H6 and cis-C4H6 has been investigated in the frame of ab initio valence bond theory with 6-31G basis set. The result shows that the Csp2-Csp2 single bond length (1.506 A) is only about 0.024 A shorter than the Csp3-Csp3 bond, thus the central bond length shortening would be mainly due to π conjugation. The theoretical resonance energies of the trans-C4H6 and cis-C4H6 are 8.48 and 7.44 kcal/mol, respectively.展开更多
A scheme has been proposed to classify valence bond (VB) wave functions for the calculations of ground and excited states, according to the symmetry properties of one electron orbitals which are involved in the const...A scheme has been proposed to classify valence bond (VB) wave functions for the calculations of ground and excited states, according to the symmetry properties of one electron orbitals which are involved in the construction of VB wave functions. This scheme is illustrated by the examples of BeH and BH. Ab initio VB computations of these two test molecules in combination with the present classification scheme give reliable results. For example, calculation results show that the state C 2Σ +of BeH is stable, with the bonding energy 0 87 eV and bond length 0 238 nm, which are in good agreement with those obtained by Gerratt et al . The bonding features of ground and low lying excited states of BeH and BH are discussed.展开更多
Paired-permanent approach for VB theory is extensively developed. Canonical expansion of a paired-permanent is deduced. Furthermore, it is shown that a paired-permanent may be expressed in terms of the products of sub...Paired-permanent approach for VB theory is extensively developed. Canonical expansion of a paired-permanent is deduced. Furthermore, it is shown that a paired-permanent may be expressed in terms of the products of sub-paired-permanents of any given order and their corresponding minors. An ab initio spin-free valence bond program, called Xiamen, is implemented by using paired-permanent approach. Test calculation shows that Xiamen package is more efficient than some other programs based on the traditional VB algorithm, and it provides a new practical tool for quantum chemistry.展开更多
基金supported by Xiangtan University Doctor Research Foundation(GrantNo.08QDZ32)
文摘The valence bond structure of substitutional BCC based Ta-W alloys is studied using characteristic crystal (CC) theory. This theory is based on cluster statistics of random alloys. By studying the correlativity between energy and volume of the CC in Ta- W alloys, the valence bond structure of CC is determined by the energy and shape method. Then, following additive law of CC, the valence bond structure of Ta-W alloys is calculated. It is found that the outer shell valence electronic distribution of Ta-W Mloys shows a continuous change in the whole composition range. The covalent electrons ec (dc, sc, and pc) increase, whereas near free electrons ef decrease with increasing W concentration. The bond length and single-bond radius decrease, whereas bond energy and bond valence increase with increasing W concentration. The mechanism of solid solution strengthening of Ta-W alloys is analyzed based on their valence bond structure.
基金supported by the National Natural Science Foundation of China(No.50271085).
文摘On the basis of energy and shape method for the determination of the valence bond ( VB ) structures of crystal, the valence bond structure of titanium is redetermined at room temperature and calculated in the whole temperature range of 0-1943K. The outer shell electronic distribution of Ti is ec^29907. (sc^0.4980 + dc^2.4927) ef^1.0098 in crystal. The temperature dependences of the VB structures of hcp and bcc phases are the same. The VB structures of hcp and bcc phases monotonically increase or decrease with the increase in temperature, but show discontinuous changes at the phase-transformation temperature 1155K.
文摘The relationship between bond valence and bond covalency in RMn2O5 (R = La, Pr, Nd.Sm, Eu) has been investigated by a semiempirical method. This method is the generalization of thedielectric description theory of Phillips. Van Vechten, Levine and Tanaka scheme. The resultsindicate that larger valences usually result in higher bond covalencies, in good agreement with thepoint that the excess charge in the bonding region is the origin of formation of bond covalency.Other factors, such as oxidation state of elements, only make a small contribution to bondcovalency.
文摘The concept of resonance-assisted hydrogen bonds(RAHBs)highlights the synergistic interplay between theπ-resonance and hydrogen bonding interactions.This concept has been well-accepted in academia and is widely used in practice.However,it has been argued that the seemingly enhanced intramolecular hydrogen bonding(IMHB)in unsaturated compounds may simply be a result of the constraints imposed by theσ-skeleton framework.Thus,it is crucial to estimate the strength of IMHBs.In this work,we used two approaches to probe the resonance effect and estimate the strength of the IMHBs in the two exemplary cases of the enol forms of acetylacetone and o-hydroxyacetophenone.One approach is the block-localized wavefunction(BLW)method,which is a variant of the ab initio valence bond(VB)theory.Using this approach,it is possible to derive the geometries and energetics with resonance shut down.The other approach is Edmiston’s truncated localized molecular orbital(TLMO)technique,which monitors the energy changes by removing the delocalization tails from localized molecular orbitals.The integrated BLW and TLMO studies confirmed that the hydrogen bonding in these two molecules is indeed enhanced byπ-resonance,and that this enhancement is not a result ofσconstraints.
基金financial support from the National Nature Science Foundation of China (21133004,21373167,21573178)the Fundamental Research Funds for the Central Universities (20720160046)the Program for Innovative Research Team in Chinese Universities (IRT_14R31)
文摘We present here a systematic theoretical study to explore the underlying mechanisms of the H abstraction reaction from methane. Various abstracting agents have been modeled, using oxygen radicals and a set of high valence metal oxo compounds. Our calculations demonstrate that although H abstraction from CH3-H by metal oxoes can be satisfactorily fitted into the Polanyi correlation on the basis of oxygen radicals, the mechanisms behind are significantly different. The frontier orbital analyses show that there are three electrons and three active orbitals (3e, 3o) involved in H abstraction by oxygen radicals; whereas an additional orbital of pi(M-O)* is involved in H abstraction by M = O, resulting in a (4e, 4o) interaction. In terms of valence bond state correlation diagram, we find that H abstraction by a metal oxo may benefit from the contribution of ionic resonance structures, which could compensate the penalty of opening the M-O pbond. We believe that these findings can help to design more effective catalysts for the activation of light alkanes. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B. V. and Science Press. All rights reserved.
基金supported by ‘Qinglan’ Talent Engineering Funds and Key Subject of Inorganic Chemistry by Tianshui Normal University
文摘The excited-state intramolecular hydrogen abstraction reactions of butanal have been investigated using the CAS-MP2/6-311+G^*//CASSCF/6-31G^* methods. Calculated results show that the hydrogen transfer induced fluorescence quenching of the n,π^*-excited state of covalent butanal with three paths: (1) The first path corresponds to direct S0-react reconstitution, which involves the first S1 decay by partial hydrogen atom transfer. (2) The second stepwise mechanism can be viewed as a full hydrogen atom transfer followed by a partial hydrogen atom back transfer, electron transfer (near S1/S0 or S0-TS) and finally a proton transfer to S0-react. (3) On the triplet surface, the surface crossing to the singlet state would be clearly much efficient at the T1/S0 region due to the large SOC value of 8.3 cm^-1. The S0-react decay route from T1/S0 was studied with an intrinsic reaction coordinate (IRC) calculation at the CASSCF level, resulting in the S0-React minimum.
基金Project supported by the National Natural Science Foundation of China(Grant No.51272027)
文摘Bond valence method illustrates the relation between valence and length of a particular bond type. This theory has been used to predict structure information, but the effect is very limited. In this paper, two indexes, i.e., global instability index(GII) and bond strain index(BSI), are adopted as a judgment of a search-match program for prediction. The results show that with GII and BSI combined as judgment, the predicted atom positions are very close to real ones. The mechanism and validity of this searching program are also discussed. The GII & BSI distribution contour map reveals that the predicted function is a reflection of exponential feature of bond valence formula. This combined searching method may be integrated with other structure-determination method, and may be helpful in refining and testifying light atom positions.
文摘The influence of the lone pair of electrons in thallium complexes is analyzed using the bond valence sum method.Bond length data for metal-organic Tl complexes were obtained from the Cambridge Structural Database(CSD),and problems with searching the CSD file for Tl complexes are discussed.The recommended R0 values for Tl(Ⅰ)-O of 2.162 ,Tl(Ⅲ)-O of 2.016 ,Tl(Ⅰ)-N of 2.286 ?,and for Tl(Ⅲ)-N of 2.014 used with b = 0.37 were derived from analyses of homoleptic Tl-O,Tl-N,and heteroleptic Tl-O and-N metal organic complexes.These R0 values can be used to assign correctly the oxidation state of Tl in complexes containing any combination of Tl-O or Tl-N bonds.Examples of questionable oxidation states for Tl complexes are given.The R0 value for Tl(Ⅲ)-Cl of 2.300 was also determined.
基金the National Key Basic Research Program,the National Natural Science Foundation of China,the Chinese Academy of Sciences,USTCSCC, SCCAS, Tianjin, and Shanghai Supercomputer Centers
基金A state major key project for basic researches supported by the National Natural Science Foundation of China
文摘The present paper covers a kind of localized orbitals, namely bond-distorted or-bitals in the valence bond calculation. Test calculation on benzene is reported. The results indicate that Dewar structures are important in the description of benzene.
文摘Introduction There has been a very significarnt resurgence of interest in ab initio valence bond calculations recently. This is because the VB calculation based on nonorthogonal basis can provide intuitive understanding about many very important phenomena in chemistry. However, practical calculation based on nonorthogonal basis is still a great challenge even to deal with a quite small system due to the well-known N! (or
基金support from the Natural Science Foundation of China(No.22073060)support from the Natural Science Foundation of China(No.22273054)This work was performed in part at the Joint School of Nanoscience and Nanoengineering,a member of the National Nanotechnology Coordinated Infrastructure(NNCI),which is supported by the US National Science Foundation(Grant ECCS-2025462).
文摘Planar cations or anions can form stacks in crystals or solutions,where the surrounding or environment plays a decisive role as demonstrated in previous studies.However,it remains unclear whether these counterintuitive interactions possess any inherent stability or are thoroughly repulsive if the constraint of environment is removed.In this work,we explored the inherent stability ofπ-πstacking between closed-shell ions of like charges with prototypes derived from experimental studies.The inherent metastability was identified by the characteristic local minima and the transition states preventing their dissociation and verified by ab initio molecular dynamics(AIMD)simulations.The nature of involved interactions was deciphered with the energy decomposition approach based on the block-localized wavefunction method(BLW-ED).Like the conventional neutralπ-πstacking interactions,electron correlation is the most attractive energy component.But it is overturned by the Coulombic repulsion between net charges for all modes of dimerization,resulting in the overall repulsive inter-cation or anion in-teractions.Contributions from van der Waals interactions were also observed in the reduced density gradient analysis.The origin of the metastability was elucidated by examining the contributions of individual physical factors to the well-depths.The inherent metastability originates from the electron correlation,which dramatically increases due to the enhanced overlap between ions from a transition state to its corresponding minimum.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11234013 and 51172274)the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA01010202)+1 种基金the National Basic Research Program of China (Grant No. 2012CB932900)the Project of Beijing Municipal Science & Technology Commission
文摘Inorganic solid electrolytes have distinguished advantages in terms of safety and stability, and are promising to substitute for conventional organic liquid electrolytes. However, low ionic conductivity of typical candidates is the key problem. As connective diffusion path is the prerequisite for high performance, we screen for possible solid electrolytes from the 2004 International Centre for Diffraction Data (ICDD) database by calculating conduction pathways using Bond Valence (BV) method. There are 109846 inorganic crystals in the 2004 ICDD database, and 5295 of them contain lithium. Except for those with toxic, radioactive, rare, or variable valence elements, 1380 materials are candidates for solid electrolytes. The rationality of the BV method is approved by comparing the existing solid electrolytes' conduction pathways we had calculated with those from ex- periments or first principle calculations. The implication for doping and substitution, two important ways to improve the conductivity, is also discussed. Among them LizCO3 is selected for a detailed comparison, and the pathway is reproduced well with that based on the density functional studies. To reveal the correlation between connectivity of pathways and conductivity, a/γ-LiAlO2 and Li2CO3 are investigated by the impedance spectrum as an example, and many experimental and theoretical studies are in process to indicate the relationship between property and structure. The BV method can calculate one material within a few minutes, providing an efficient way to lock onto targets from abundant data, and to investigate the struc- ture-property relationship systematically.
基金supported by the National Key Research and Development Program of China(Nos.2017YFB0701600)the National Natural Science Foundation of China(51622207,U1630134).
文摘Inorganic solid electrolytes have obvious advantages on safety and electrochemical stability compared to organic liquid electrolytes,but the advance on high ionic conductivity of typical electrolytes is still undergoing.Although the first-principles calculation in the ion migration simulation is an important strategy to develop high-performance solid electrolyte,the process is very time-consuming.Here,we propose an effective method by combining the geometrical analysis and bond valance sum calculation to obtain an approximate minimum energy path preliminarily,in parallel to pave the way for the interoperability of low-precision and high-precision ion transport calculation.Taking a promising electrolyte Li_(3)PS_(4) as an example,we revisit its Li-ionic transport behavior.Our calculated Li-ion pathways and the activation energies(the corresponding values:1.09 eV vs.0.88 eV vs.0.86 eV)in γ-,β- and α-Li_(3)PS_(4) are consistent with the ones obtained from the first-principles calculations.The variations of the position of P-ions lead the rearrangement of the host PS_(4) tetrahedron,affecting the diffusion positions of Li-ions and further enabling high Li^(+) conductivity in β-Li_(3)PS_(4).
基金the National Natrual Science Foundation of China (21290193)
文摘This project aims to attack the frontiers of electronic structure calculations on the excited states of large molecules and molecular aggregates by developing novel theoretical and computational methods. The methodology development is especially based on the time-dependent density functional theory (TDDFT) and valence bond (VB) theory, and is expected to be computationally effective and accurate as well. Research works on the following related subjects will be performed: (1) The analytical energy-derivative approaches for electronically excited state within TDDFT will be developed to reduce bypass the computational costs in the calculation of molecular excited-state properties. (2) The ab initio methods for electronically excited state based on VB theory and hybrid TDDFT-VB method will be developed to overcome the limitations of current TDDFT in simulating photophysics and photochemistry. (3) For larger aggregates, neither ab initio methods nor TDDFT is applicable. We intend to build the effective model Hamiltonian by developing novel theoretical and computational methods to calculate the involved microscopic physical parameters from the first-principles methods. The constructed effective Hamiltonian is then used to describe the excitonic states and excitonic dynamics of the natural or artificial photosynthesized systems, organic or inorganic photovoltaic cell. (4) The condensed phase environment is taken into account by combining the developed theories and algorithms based on TDDFT and VB with the polarizable continuum solvent models (PCM), molecular mechanism (MM), classical electrodynamics (ED) or molecular dynamics (MD) theory. (5) Highly efficient software packages will be designed and developed.
文摘We prepared (1-x)CaTiO3-xLaAlO3 (0 ≤x≤ 1) microwave dielectric ceramics using a conventional two-step solid-state reaction method,and investigated microwave dielectric properties of the ceramics in terms of A/B-site ionic-parameters.Ionic-parameters such as ionic polarizability,A-site bond valence,and ionic rattling were linked to the microwave dielectric properties.As the LaAlO3 content x in the (1-x)CaTiO3-xLaAlO3 ceramics increased from 0.3 to 0.7,the dielectric constant gradually decreased,which was attributed to the decrease of polarizability deviation and suppression of the cation rattling.The temperature coefficient of the resonant frequency decreased as the content of LaAlO3 increased because of the increase of A-site cation bond valence.The quality factor value (Q × f) increased as LaAlO3 content increased because of the enhancement of the order degree of B-site cation.A significant deterioration of the temperature coefficient of the resonant frequency and Q ×fvalue was observed at the composition x =0.5.These decreases were attributed to a phase transition from orthorhombic crystal (for x ≤ 0.5) to rhombohedral crystal (for x > 0.5).
基金This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(2009-0078000).
文摘Effects of crystal structures on dielectric properties of ATiO_(3)(trigonal ilmenite),ATa_(2)O_(6)(tetragonal tri-rutile)and AWO_(4)(monoclinic wolframite)(A=Ni,Mg,Co)ceramics with A-and B-site oxygen octahedra were investigated at microwave frequencies.The dielectric constant(K) of the specimens was affected by the dielectric polarizabilities of composition and cation bond valence between octahedral cation and oxygen ion per molar volum(V_(m)).The quality factor(Qf)of ATiO_(3)was appreciably larger than those of ATa_(2)O_(6)and AWO_(4)due to the different sharing types of oxygen octahedra.The temperature coe±cient of resonant frequency(TCF)of the specimens was dependent on the octahedral distortion per V_(m).
基金supported by the State Major Key Project for Basic Researches and the National Natural Science Foundation of China.
文摘The π electronic delocalization in trans-C4H6 and cis-C4H6 has been investigated in the frame of ab initio valence bond theory with 6-31G basis set. The result shows that the Csp2-Csp2 single bond length (1.506 A) is only about 0.024 A shorter than the Csp3-Csp3 bond, thus the central bond length shortening would be mainly due to π conjugation. The theoretical resonance energies of the trans-C4H6 and cis-C4H6 are 8.48 and 7.44 kcal/mol, respectively.
基金theMinistryofEducationforScienceandTechnology (No .2 0 0 2 10 0 2 )theNaturalScienceFoundation (No .2 0 0 2F0 10 )ofFujianProvince
文摘A scheme has been proposed to classify valence bond (VB) wave functions for the calculations of ground and excited states, according to the symmetry properties of one electron orbitals which are involved in the construction of VB wave functions. This scheme is illustrated by the examples of BeH and BH. Ab initio VB computations of these two test molecules in combination with the present classification scheme give reliable results. For example, calculation results show that the state C 2Σ +of BeH is stable, with the bonding energy 0 87 eV and bond length 0 238 nm, which are in good agreement with those obtained by Gerratt et al . The bonding features of ground and low lying excited states of BeH and BH are discussed.
基金the National Natural Science Foundation of China (Grant Nos. 20073033, 20023001 and 29892166).
文摘Paired-permanent approach for VB theory is extensively developed. Canonical expansion of a paired-permanent is deduced. Furthermore, it is shown that a paired-permanent may be expressed in terms of the products of sub-paired-permanents of any given order and their corresponding minors. An ab initio spin-free valence bond program, called Xiamen, is implemented by using paired-permanent approach. Test calculation shows that Xiamen package is more efficient than some other programs based on the traditional VB algorithm, and it provides a new practical tool for quantum chemistry.