Effects of swirnming on bone density and mechanical properties of femur were investigated in aged male and female mice. R/1 strain of senescence accelerated mouse (SAM) at eleven months old was used. Two groups of mal...Effects of swirnming on bone density and mechanical properties of femur were investigated in aged male and female mice. R/1 strain of senescence accelerated mouse (SAM) at eleven months old was used. Two groups of males and two groups of females each consisting of 7 mice were used. One male and one female groups were loaded with a swim regiment of 40 min a day, 5 days a week for 6 consecutive weeks. The remaining groups were used as the controls. All mice were fed with the standard diet and water ad libitum during the experiments.The results of this study indicated that (i) the hady weight was significantly (P<0.05) lower in the swimming groups than in the control groups in boh sexes. (ii) The bone density was significantly higher (P <0.05) in the swimming groups than in the control groups in boh sexes. However, there was no sighficant difference in cortical thickness index. (iii) In the mechanical properties of bone, there were no significant differences in the level of the maximum breaking force, the ultimate stress and the deformation between the swimndng and the contro groups in beth sexes. However, the elasticity of the bone of the female hoce in the swimming group was significantly higher (P<0.05) than that of the control group.These results suggest that regimented swimming for the aged mice might suppress age-associated bone loss, and the effect of exercise in the females is greater that in the males.展开更多
The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching...The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching (FRAP) approach to quantify load-induced fluid and solute transport in the LCS in situ, but the measurements were limited to cortical regions 30-50 μm underneath the periosteum due to the constrains of laser penetration. With this work, we aimed to expand our understanding of load-induced fluid and solute transport in both trabecular and cortical bone using a multiscaled image-based finite element analysis (FEA) approach. An intact murine tibia was first re-constructed from microCT images into a three-dimensional (3D) linear elastic FEA model, and the matrix deformations at various locations were calculated under axial loading. A segment of the above 3D model was then imported to the biphasic poroelasticity analysis platform (FEBio) to predict load-induced fluid pressure fields, and interstitial solute/fluid flows through LCS in both cortical and trabecular regions. Further, secondary flow effects such as the shear stress and/or drag force acting on osteocytes, the presumed mechano-sensors in bone, were derived using the previously developed ultrastructural model of Brinkman flow in the canaliculi. The material properties assumed in the FEA models were validated against previously obtained strain and FRAP transport data measured on the cortical cortex. Our results demonstrated the feasibility of this computational approach in estimating the fluid flux in the LCS and the cellular stimulation forces (shear and drag forces) for osteocytes in any cortical and trabecular bone locations, allowing further studies of how the activation of osteocytes correlates with in vivo functional bone formation. The study provides a promising platform to reveal potential cellular mechanisms underlying the anabolic power of exercises and physical activities in treating patients with skeletal deficiencies.展开更多
We introduced the hydrophilic groups to acrylic bone cement to improve compliance and achieve more interdigitation between the bone and the acrylic bone cement in order to create better substrates for immediate loadin...We introduced the hydrophilic groups to acrylic bone cement to improve compliance and achieve more interdigitation between the bone and the acrylic bone cement in order to create better substrates for immediate loading. FTIR-ATR, contact angle, and maximum breach torque were employed for measurement. The results reveal that the introduction of hydrophilic functional groups has increased PMMA's surface hydrophilicity after contact angle test. FTIR-ATR results suggest the hydrophilic groups participate in the polymerization reactions, and maximum breach torque of the hydrophilic acrylic bone cements is near 110 Ncm torque. Those effects make it possible for conventional acrylic bone cement application in immediate loading of dental implant.展开更多
This study presents the development of an innovative artificial finger-like device that provides position specific mechanical loads at the end of the long bone and induces mechanotransduction in bone. Bone cells such ...This study presents the development of an innovative artificial finger-like device that provides position specific mechanical loads at the end of the long bone and induces mechanotransduction in bone. Bone cells such as osteoblasts are the mechanosensitive cells that regulate bone remodelling. When they receive gentle, periodic mechanical loads, new bone formation is promoted. The proposed device is an under-actuated multi-fingered artificial hand with 4 fingers, each having two phalanges. These fingers are connected by mechanical linkages and operated by a worm gearing mechanism. With the help of 3D printing technology, a prototype device was built mostly using plastic materials. The experimental validation results show that the device is capable of generating necessary forces at the desired frequencies, which are suitable for the stimulation of bone cells and the promotion of bone formation. It is recommended that the device be tested in a clinical study for confirming its safety and efficacy with patients.展开更多
<b><span>Aims:</span></b><span> We expanded the known technique for simultaneously augmenting an atrophic maxilla and placement of immediate provisional implants (IPI), followed by i...<b><span>Aims:</span></b><span> We expanded the known technique for simultaneously augmenting an atrophic maxilla and placement of immediate provisional implants (IPI), followed by immediate loading by performing surgery in both jaws simultaneously. Feasibility of this new technique, implant survival and success were evaluated as well as pro</span><span>s</span><span>thetic success.</span><span> </span><b><span>Materials and Methods:</span></b><span> All patients undergoing simultaneous bone grafting and IPI placement with immediate </span><span>loading at our institute between the 1st of June 2016 and the 30th of May 2018 were included and followed up for at least one year postoperatively.</span><span> </span><b><span>Results:</span></b><span> 3 patients were followed for a mean period of 25</span><span>.</span><span>67 months (20</span><span> </span><span>-</span><span> </span><span>29 months).</span><span> 33 IPIs were placed. All were immobile at second stage surgery without signs of infection. No provisional bridges were lost and no infections were noted. After second stage surgery, none of these 36 final dental implants were lost. There was some bone loss at one implant. In all patients</span><span>,</span><span> good functional and aesthetic results were obtained without any unforeseen complications. This renders the implant survival at 100% and the success rate at 97%.</span><b><span> </span></b><b><span>Conclusion:</span></b><span> The technique is complex due to the intricate step-by-step process that is required and depends on a dedicated team to ensure a proper workflow. When performed correctly, the protocol shows good and predictable results.</span>展开更多
Osteoblasts are derived from mesenchymal stem cells (MSCs), which initiate and regulate bone formation. New strategies for osteoporosis treatments have aimed to control the fate of MSCs. While functional disuse decr...Osteoblasts are derived from mesenchymal stem cells (MSCs), which initiate and regulate bone formation. New strategies for osteoporosis treatments have aimed to control the fate of MSCs. While functional disuse decreases MSC growth and osteogenic potentials, mechanical signals enhance MSC quantity and bias their differentiation toward osteoblastogenesis. Through a non-invasive dynamic hydraulic stimulation (DHS), we have found that DHS can mitigate trabecular bone loss in a functional disuse model via rat hindlimb suspension (HLS). To further elucidate the downstream cellular effect of DHS and its potential mechanism underlying the bone quality enhancement, a longitudinal in vivo study was designed to evaluate the MSC populations in response to DHS over 3, 7, 14, and 21 days. Five-month old female Sprague Dawley rats were divided into three groups for each time point: age-matched control, HLS, and HLS+DHS. DHS was delivered to the right mid-tibiae with a daily "10 min on-5 min off-10 min on" loading regime for five days/week. At each sacrifice time point, bone marrow MSCs of the stimulated and control tibiae were isolated through specific cell surface markers and quantified by flow cytometry analysis. A strong time-dependent manner of bone marrow MSC induction was observed in response to DHS, which peaked on day 14. After 21 days, this effect of DHS was diminished. This study indicates that the MSC pool is positively influenced by the mechanical signals driven by DHS. Coinciding with our previous findings of mitigation of disuse bone loss, DHS induced changes in MSC number may bias the differentiation of the MSC population towards osteoblastogenesis, thereby promoting bone formation under disuse conditions. This study provides insights into the mechanism of time-sensitive MSC induction in response to mechanical loading, and for the optimal design of osteovorosis treatments.展开更多
Human bone may be damaged by impact in the cases of traffic accidents and ship impact. The impact responses of cancellous bone were analyzed based on the two-phase media theory. A direct analytical method is introduce...Human bone may be damaged by impact in the cases of traffic accidents and ship impact. The impact responses of cancellous bone were analyzed based on the two-phase media theory. A direct analytical method is introduced for solving this type of problems. First, flow function and potential function were introduced to decouple the controlling equations. Then direction solving method was used to obtain the solution. The solution is determined by the parameters of a (related with wave speed) and b (related with damping), as well as the boundary conditions. These two parameters a and b determine the propagation speed of the responses along the bone and the attenuation rate. It is shown that the responses: deformation, stress and pressure of the corpus medullae caused by loading, propagate toward the other end when the impact is acted on one end of the bone. The responses are discontinuous during propagate. The discontinuous surface moves with a constant speed. The responses at the cross section increase gradually from the bottom to the top because of the distribution of the loading at the boundary. The solutions can be used as the basis for certification of numerical simulation as well as the design of impact prevention of bone.展开更多
Dynamic loading to a knee joint is considered to be an effective modality for enhancing the healing of long bones and cartilage that are subject to ailments like fractures, osteoarthritis, etc. We developed a knee loa...Dynamic loading to a knee joint is considered to be an effective modality for enhancing the healing of long bones and cartilage that are subject to ailments like fractures, osteoarthritis, etc. We developed a knee loading device and tested it for force application. The device applies forces on the skin, whereas force transmitted to the knee joint elements is directly responsible for promoting the healing of bone and cartilage. However, it is not well understood how loads on the skin are transmitted to the cartilage, ligaments, and bone. Based on a CAD model of a human knee joint, we conducted a finite element analysis (FEA) for force transmission from the skin and soft tissue to a knee joint. In this study, 3D models of human knee joint elements were assembled in an FEA software package (SIMSOLID). A wide range of forces was applied to the skin with different thickness in order to obtain approximate force values transmitted from the skin to the joint elements. The maximum Von Mises stress and displacement distributions were estimated for different components of the knee joint. The results demonstrate that the high load bearing areas were located on the posterior portion of the cartilage. This prediction can be used to improve the design of the knee loading device.展开更多
We consider the problem of assessing bone fracture risk for a subject hit by a blunt impact projectile. We aim at constructing a framework for integrating test data and Advanced Total Body Model (ATBM) simulations int...We consider the problem of assessing bone fracture risk for a subject hit by a blunt impact projectile. We aim at constructing a framework for integrating test data and Advanced Total Body Model (ATBM) simulations into the risk assessment. The ATBM is a finite element model managed by the Joint Non-Lethal Weapons Directorate for the purpose of assessing the risk of injury caused by blunt impacts from non-lethal weapons. In ATBM simulations, the quantity that determines arm bone fracture is the calculated maximum strain in the bone. The main obstacle to accurate prediction is that the calculated strain is incompatible with the measured strain. The fracture strain measured in bending tests of real bones is affected by random inhomogeneity in bones and uncertainty in measurement gauge attachment location/orientation. In contrast, the strain calculated in ATBM simulations is based on the assumption that all bones are perfectly elastic with homogeneous material properties and no measurement uncertainty. To connect test data and ATBM simulations in a proper and meaningful setting, we introduce the concept of elasticity-homogenized strain. We interpret test data in terms of the homogenized strain, and build an empirical dose-injury model with the homogenized strain as the input dose for predicting injury. The maximum strain calculated by ATBM has randomness due to uncertainty in specifications of ATBM setup parameters. The dose propagation uncertainty formulation accommodates this uncertainty efficiently by simply updating the shape parameters in the dose-injury model, avoiding the high computational cost of sampling this uncertainty via multiple ATBM runs.展开更多
文摘Effects of swirnming on bone density and mechanical properties of femur were investigated in aged male and female mice. R/1 strain of senescence accelerated mouse (SAM) at eleven months old was used. Two groups of males and two groups of females each consisting of 7 mice were used. One male and one female groups were loaded with a swim regiment of 40 min a day, 5 days a week for 6 consecutive weeks. The remaining groups were used as the controls. All mice were fed with the standard diet and water ad libitum during the experiments.The results of this study indicated that (i) the hady weight was significantly (P<0.05) lower in the swimming groups than in the control groups in boh sexes. (ii) The bone density was significantly higher (P <0.05) in the swimming groups than in the control groups in boh sexes. However, there was no sighficant difference in cortical thickness index. (iii) In the mechanical properties of bone, there were no significant differences in the level of the maximum breaking force, the ultimate stress and the deformation between the swimndng and the contro groups in beth sexes. However, the elasticity of the bone of the female hoce in the swimming group was significantly higher (P<0.05) than that of the control group.These results suggest that regimented swimming for the aged mice might suppress age-associated bone loss, and the effect of exercise in the females is greater that in the males.
基金supported by grants from NIH (P30GM103333 and RO1AR054385 to LW)China CSC fellowship (to LF)DOD W81XWH-13-1-0148 (to XLL)
文摘The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching (FRAP) approach to quantify load-induced fluid and solute transport in the LCS in situ, but the measurements were limited to cortical regions 30-50 μm underneath the periosteum due to the constrains of laser penetration. With this work, we aimed to expand our understanding of load-induced fluid and solute transport in both trabecular and cortical bone using a multiscaled image-based finite element analysis (FEA) approach. An intact murine tibia was first re-constructed from microCT images into a three-dimensional (3D) linear elastic FEA model, and the matrix deformations at various locations were calculated under axial loading. A segment of the above 3D model was then imported to the biphasic poroelasticity analysis platform (FEBio) to predict load-induced fluid pressure fields, and interstitial solute/fluid flows through LCS in both cortical and trabecular regions. Further, secondary flow effects such as the shear stress and/or drag force acting on osteocytes, the presumed mechano-sensors in bone, were derived using the previously developed ultrastructural model of Brinkman flow in the canaliculi. The material properties assumed in the FEA models were validated against previously obtained strain and FRAP transport data measured on the cortical cortex. Our results demonstrated the feasibility of this computational approach in estimating the fluid flux in the LCS and the cellular stimulation forces (shear and drag forces) for osteocytes in any cortical and trabecular bone locations, allowing further studies of how the activation of osteocytes correlates with in vivo functional bone formation. The study provides a promising platform to reveal potential cellular mechanisms underlying the anabolic power of exercises and physical activities in treating patients with skeletal deficiencies.
文摘We introduced the hydrophilic groups to acrylic bone cement to improve compliance and achieve more interdigitation between the bone and the acrylic bone cement in order to create better substrates for immediate loading. FTIR-ATR, contact angle, and maximum breach torque were employed for measurement. The results reveal that the introduction of hydrophilic functional groups has increased PMMA's surface hydrophilicity after contact angle test. FTIR-ATR results suggest the hydrophilic groups participate in the polymerization reactions, and maximum breach torque of the hydrophilic acrylic bone cements is near 110 Ncm torque. Those effects make it possible for conventional acrylic bone cement application in immediate loading of dental implant.
文摘This study presents the development of an innovative artificial finger-like device that provides position specific mechanical loads at the end of the long bone and induces mechanotransduction in bone. Bone cells such as osteoblasts are the mechanosensitive cells that regulate bone remodelling. When they receive gentle, periodic mechanical loads, new bone formation is promoted. The proposed device is an under-actuated multi-fingered artificial hand with 4 fingers, each having two phalanges. These fingers are connected by mechanical linkages and operated by a worm gearing mechanism. With the help of 3D printing technology, a prototype device was built mostly using plastic materials. The experimental validation results show that the device is capable of generating necessary forces at the desired frequencies, which are suitable for the stimulation of bone cells and the promotion of bone formation. It is recommended that the device be tested in a clinical study for confirming its safety and efficacy with patients.
文摘<b><span>Aims:</span></b><span> We expanded the known technique for simultaneously augmenting an atrophic maxilla and placement of immediate provisional implants (IPI), followed by immediate loading by performing surgery in both jaws simultaneously. Feasibility of this new technique, implant survival and success were evaluated as well as pro</span><span>s</span><span>thetic success.</span><span> </span><b><span>Materials and Methods:</span></b><span> All patients undergoing simultaneous bone grafting and IPI placement with immediate </span><span>loading at our institute between the 1st of June 2016 and the 30th of May 2018 were included and followed up for at least one year postoperatively.</span><span> </span><b><span>Results:</span></b><span> 3 patients were followed for a mean period of 25</span><span>.</span><span>67 months (20</span><span> </span><span>-</span><span> </span><span>29 months).</span><span> 33 IPIs were placed. All were immobile at second stage surgery without signs of infection. No provisional bridges were lost and no infections were noted. After second stage surgery, none of these 36 final dental implants were lost. There was some bone loss at one implant. In all patients</span><span>,</span><span> good functional and aesthetic results were obtained without any unforeseen complications. This renders the implant survival at 100% and the success rate at 97%.</span><b><span> </span></b><b><span>Conclusion:</span></b><span> The technique is complex due to the intricate step-by-step process that is required and depends on a dedicated team to ensure a proper workflow. When performed correctly, the protocol shows good and predictable results.</span>
基金supported by the National Institute of Health (R01 AR52379, AR49286, and AR60621)
文摘Osteoblasts are derived from mesenchymal stem cells (MSCs), which initiate and regulate bone formation. New strategies for osteoporosis treatments have aimed to control the fate of MSCs. While functional disuse decreases MSC growth and osteogenic potentials, mechanical signals enhance MSC quantity and bias their differentiation toward osteoblastogenesis. Through a non-invasive dynamic hydraulic stimulation (DHS), we have found that DHS can mitigate trabecular bone loss in a functional disuse model via rat hindlimb suspension (HLS). To further elucidate the downstream cellular effect of DHS and its potential mechanism underlying the bone quality enhancement, a longitudinal in vivo study was designed to evaluate the MSC populations in response to DHS over 3, 7, 14, and 21 days. Five-month old female Sprague Dawley rats were divided into three groups for each time point: age-matched control, HLS, and HLS+DHS. DHS was delivered to the right mid-tibiae with a daily "10 min on-5 min off-10 min on" loading regime for five days/week. At each sacrifice time point, bone marrow MSCs of the stimulated and control tibiae were isolated through specific cell surface markers and quantified by flow cytometry analysis. A strong time-dependent manner of bone marrow MSC induction was observed in response to DHS, which peaked on day 14. After 21 days, this effect of DHS was diminished. This study indicates that the MSC pool is positively influenced by the mechanical signals driven by DHS. Coinciding with our previous findings of mitigation of disuse bone loss, DHS induced changes in MSC number may bias the differentiation of the MSC population towards osteoblastogenesis, thereby promoting bone formation under disuse conditions. This study provides insights into the mechanism of time-sensitive MSC induction in response to mechanical loading, and for the optimal design of osteovorosis treatments.
文摘Human bone may be damaged by impact in the cases of traffic accidents and ship impact. The impact responses of cancellous bone were analyzed based on the two-phase media theory. A direct analytical method is introduced for solving this type of problems. First, flow function and potential function were introduced to decouple the controlling equations. Then direction solving method was used to obtain the solution. The solution is determined by the parameters of a (related with wave speed) and b (related with damping), as well as the boundary conditions. These two parameters a and b determine the propagation speed of the responses along the bone and the attenuation rate. It is shown that the responses: deformation, stress and pressure of the corpus medullae caused by loading, propagate toward the other end when the impact is acted on one end of the bone. The responses are discontinuous during propagate. The discontinuous surface moves with a constant speed. The responses at the cross section increase gradually from the bottom to the top because of the distribution of the loading at the boundary. The solutions can be used as the basis for certification of numerical simulation as well as the design of impact prevention of bone.
文摘Dynamic loading to a knee joint is considered to be an effective modality for enhancing the healing of long bones and cartilage that are subject to ailments like fractures, osteoarthritis, etc. We developed a knee loading device and tested it for force application. The device applies forces on the skin, whereas force transmitted to the knee joint elements is directly responsible for promoting the healing of bone and cartilage. However, it is not well understood how loads on the skin are transmitted to the cartilage, ligaments, and bone. Based on a CAD model of a human knee joint, we conducted a finite element analysis (FEA) for force transmission from the skin and soft tissue to a knee joint. In this study, 3D models of human knee joint elements were assembled in an FEA software package (SIMSOLID). A wide range of forces was applied to the skin with different thickness in order to obtain approximate force values transmitted from the skin to the joint elements. The maximum Von Mises stress and displacement distributions were estimated for different components of the knee joint. The results demonstrate that the high load bearing areas were located on the posterior portion of the cartilage. This prediction can be used to improve the design of the knee loading device.
文摘We consider the problem of assessing bone fracture risk for a subject hit by a blunt impact projectile. We aim at constructing a framework for integrating test data and Advanced Total Body Model (ATBM) simulations into the risk assessment. The ATBM is a finite element model managed by the Joint Non-Lethal Weapons Directorate for the purpose of assessing the risk of injury caused by blunt impacts from non-lethal weapons. In ATBM simulations, the quantity that determines arm bone fracture is the calculated maximum strain in the bone. The main obstacle to accurate prediction is that the calculated strain is incompatible with the measured strain. The fracture strain measured in bending tests of real bones is affected by random inhomogeneity in bones and uncertainty in measurement gauge attachment location/orientation. In contrast, the strain calculated in ATBM simulations is based on the assumption that all bones are perfectly elastic with homogeneous material properties and no measurement uncertainty. To connect test data and ATBM simulations in a proper and meaningful setting, we introduce the concept of elasticity-homogenized strain. We interpret test data in terms of the homogenized strain, and build an empirical dose-injury model with the homogenized strain as the input dose for predicting injury. The maximum strain calculated by ATBM has randomness due to uncertainty in specifications of ATBM setup parameters. The dose propagation uncertainty formulation accommodates this uncertainty efficiently by simply updating the shape parameters in the dose-injury model, avoiding the high computational cost of sampling this uncertainty via multiple ATBM runs.