期刊文献+
共找到1,979篇文章
< 1 2 99 >
每页显示 20 50 100
O-linkedβ-N-acetylglucosaminylation may be a key regulatory factor in promoting osteogenic differentiation of bone marrow mesenchymal stromal cells
1
作者 Xu-Chang Zhou Guo-Xin Ni 《World Journal of Stem Cells》 SCIE 2024年第3期228-231,共4页
Cumulative evidence suggests that O-linkedβ-N-acetylglucosaminylation(OGlcNAcylation)plays an important regulatory role in pathophysiological processes.Although the regulatory mechanisms of O-GlcNAcylation in tumors ... Cumulative evidence suggests that O-linkedβ-N-acetylglucosaminylation(OGlcNAcylation)plays an important regulatory role in pathophysiological processes.Although the regulatory mechanisms of O-GlcNAcylation in tumors have been gradually elucidated,the potential mechanisms of O-GlcNAcylation in bone metabolism,particularly,in the osteogenic differentiation of bone marrow mesenchymal stromal cells(BMSCs)remains unexplored.In this study,the literature related to O-GlcNAcylation and BMSC osteogenic differentiation was reviewed,assuming that it could trigger more scholars to focus on research related to OGlcNAcylation and bone metabolism and provide insights into the development of novel therapeutic targets for bone metabolism disorders such as osteoporosis. 展开更多
关键词 O-GLCNACYLATION Osteogenic differentiation bone marrow mesenchymal stromal cells OSTEOPOROSIS
下载PDF
Is mandible derived mesenchymal stromal cells superior in proliferation and regeneration to long bone-derived mesenchymal stromal cells? 被引量:1
2
作者 Madhan Jeyaraman Tushar Verma +3 位作者 Naveen Jeyaraman Bishnu Prasad Patro Arulkumar Nallakumarasamy Manish Khanna 《World Journal of Methodology》 2023年第2期10-17,共8页
Mesenchymal stromal cells(MSCs)are cells with the characteristic ability of self-renewal along with the ability to exhibit multilineage differentiation.Bone marrow(BM)is the first tissue in which MSCs were identified ... Mesenchymal stromal cells(MSCs)are cells with the characteristic ability of self-renewal along with the ability to exhibit multilineage differentiation.Bone marrow(BM)is the first tissue in which MSCs were identified and BM-MSCs are most commonly used among various MSCs in clinical settings.MSCs can stimulate and promote osseous regeneration.Due to the difference in the development of long bones and craniofacial bones,the mandibular-derived MSCs(M-MSCs)have distinct differentiation characteristics as compared to that of long bones.Both mandibular and long bone-derived MSCs are positive for MSC-associated markers such as CD-73,-105,and-106,stage-specific embryonic antigen 4 and Octamer-4,and negative for hematopoietic markers such as CD-14. 展开更多
关键词 MANDIBLE Long bone Mesenchymal stromal cells Osteogenic potential REGENERATION
下载PDF
Senescent mesenchymal stem/stromal cells in pre-metastatic bone marrow of untreated advanced breast cancer patients
3
作者 FRANCISCO RAÚL BORZONE MARÍA BELÉN GIORELLO +6 位作者 LEANDRO MARCELO MARTINEZ MARÍA CECILIA SANMARTIN LEONARDO FELDMAN FEDERICO DIMASE EMILIO BATAGELJ GUSTAVO YANNARELLI NORMA ALEJANDRA CHASSEING 《Oncology Research》 SCIE 2023年第3期361-374,共14页
Breast cancer is the predominant form of carcinoma among women worldwide,with 70%of advanced patients developing bone metastases,with a high mortality rate.In this sense,the bone marrow(BM)mesenchymal stem/stromal cel... Breast cancer is the predominant form of carcinoma among women worldwide,with 70%of advanced patients developing bone metastases,with a high mortality rate.In this sense,the bone marrow(BM)mesenchymal stem/stromal cells(MSCs)are critical for BM/bone homeostasis,and failures in their functionality,transform the BM into a premetastatic niche(PMN).We previously found that BM-MSCs from advanced breast cancer patients(BCPs,infiltrative ductal carcinoma,stage III-B)have an abnormal profile.This work aims to study some of the metabolic and molecular mechanisms underlying MSCs shift from a normal to an abnormal profile in this group of patients.A comparative analysis was undertaken,which included self-renewal capacity,morphology,proliferation capacity,cell cycle,reactive oxygen species(ROS)levels,and senescence-associatedβ‑galactosidase(SA‑β‑gal)staining of BMderived MSCs isolated from 14 BCPs and 9 healthy volunteers(HVs).Additionally,the expression and activity of the telomerase subunit TERT,as well as telomere length,were measured.Expression levels of pluripotency,osteogenic,and osteoclastogenic genes(OCT-4,SOX-2,M-CAM,RUNX-2,BMP-2,CCL-2,M-CSF,and IL-6)were also determined.The results showed that MSCs from BCPs had reduced,self-renewal and proliferation capacity.These cells also exhibited inhibited cell cycle progression and phenotypic changes,such as an enlarged and flattened appearance.Additionally,there was an increase in ROS and senescence levels and a decrease in the functional capacity of TERT to preserve telomere length.We also found an increase in pro-inflammatory/pro-osteoclastogenic gene expression and a decrease in pluripotency gene expression.We conclude that these changes could be responsible for the abnormal functional profile that MSCs show in this group of patients. 展开更多
关键词 Mesenchymal stem/stromal cells Senescence Breast cancer bone marrow Pre-metastatic niche bone metastasis
下载PDF
Constitutive aryl hydrocarbon receptor facilitates the regenerative potential of mouse bone marrow mesenchymal stromal cells
4
作者 Jing Huang Yi-Ning Wang Yi Zhou 《World Journal of Stem Cells》 SCIE 2023年第8期807-820,共14页
BACKGROUND Bone marrow mesenchymal stromal cells(BMSCs)are the commonly used seed cells in tissue engineering.Aryl hydrocarbon receptor(AhR)is a transcription factor involved in various cellular processes.However,the ... BACKGROUND Bone marrow mesenchymal stromal cells(BMSCs)are the commonly used seed cells in tissue engineering.Aryl hydrocarbon receptor(AhR)is a transcription factor involved in various cellular processes.However,the function of constitutive AhR in BMSCs remains unclear.AIM To investigate the role of AhR in the osteogenic and macrophage-modulating potential of mouse BMSCs(mBMSCs)and the underlying mechanism.METHODS Immunochemistry and immunofluorescent staining were used to observe the expression of AhR in mouse bone marrow tissue and mBMSCs.The overexpression or knockdown of AhR was achieved by lentivirus-mediated plasmid.The osteogenic potential was observed by alkaline phosphatase and alizarin red staining.The mRNA and protein levels of osteogenic markers were detected by quantitative polymerase chain reaction(qPCR)and western blot.After coculture with different mBMSCs,the cluster of differentiation(CD)86 and CD206 expressions levels in RAW 264.7 cells were analyzed by flow cytometry.To explore the underlying molecular mechanism,the interaction of AhR with signal transducer and activator of transcription 3(STAT3)was observed by co-immunoprecipitation and phosphorylation of STAT3 was detected by western blot.RESULTS AhR expressions in mouse bone marrow tissue and isolated mBMSCs were detected.AhR overexpression enhanced the osteogenic potential of mBMSCs while AhR knockdown suppressed it.The ratio of CD86+RAW 264.7 cells cocultured with AhR-overexpressed mBMSCs was reduced and that of CD206+cells was increased.AhR directly interacted with STAT3.AhR overexpression increased the phosphorylation of STAT3.After inhibition of STAT3 via stattic,the promotive effects of AhR overexpression on the osteogenic differentiation and macrophage-modulating were partially counteracted.CONCLUSION AhR plays a beneficial role in the regenerative potential of mBMSCs partially by increasing phosphorylation of STAT3. 展开更多
关键词 Aryl hydrocarbon receptor bone marrow mesenchymal stromal cells OSTEOGENESIS MACROPHAGE Signal transducer and activator of transcription 3 Interaction
下载PDF
Overexpression of lentivirus-mediated glial cell line-derived neurotrophic factor in bone marrow stromal cells and its neuroprotection for the PC12 cells damaged by lactacystin 被引量:1
5
作者 苏雅茹 王坚 +2 位作者 邬剑军 陈嬿 蒋雨平 《Neuroscience Bulletin》 SCIE CAS CSCD 2007年第2期67-74,共8页
Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by... Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by transfecting it into bone marrow stromal cells (BMSCs). Methods pLenti6/V5-GDNF plasmid was set up by double restriction enzyme digestion and ligation, and then the plasmid was transformed into Top10 cells. Purified pLenti6/V5-GDNF plasmids from the positive clones and the packaging mixture were cotransfected to the 293FT packaging cell line by Lipofectamine2000 to produce lentivirus, then the concentrated virus was transduced to BMSCs. Overexpression of GDNF in BMSCs was tested by RT-PCR, ELISA and immunocytochemistry, and its neuroprotection for lactacystin-damaged PC12 cells was evaluated by MTT assay. Results Virus stock of GDNF was harvested with the titer of 5.6×10^5 TU/mL. After tmnsduction, GDNF-BMSCs successfully secreted GDNF to supematant with nigher concentration (800 pg/mL) than BMSCs did (less than 100 pg/mL). The supematant of GDNF-BMSCs could significantly alleviate the damage of PC12 cells induced by lactacystin (10 μmol/L). Conclusion Overexpression of lentivirus-mediated GDNF in the BMSCs cells can effectively protect PC12 cells from the injury by the proteasome inhibitor. 展开更多
关键词 Parkinson' s disease proteasome inhibitor glial cell line-derived neurotropnic factor LENTIVIRUS gene therapy bone marrow stromal cells
下载PDF
Bone Marrow Stromal Cells Express Neural Phenotypes in vitro and Migrate in Brain After Transplantation in vivo 被引量:29
6
作者 LI-YE YAN TIAN-HUA HUANG LIAN MA 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2006年第5期329-335,共7页
Objective To investigate the differentiation of bone marrow stromal cells (BMSC) into neuron-like cells and to explore their potential use for neural transplantation. Methods BMSC from rats and adult humans were cul... Objective To investigate the differentiation of bone marrow stromal cells (BMSC) into neuron-like cells and to explore their potential use for neural transplantation. Methods BMSC from rats and adult humans were cultured in serum-containing media. Salvia miltiorrhiza was used to induce human BMSC (hBMSC) to differentiate. BMSC were identified with immunocytochemistry. Semi-quantitative RT-PCR was used to examine mRNA expression of neurofilamentl (NF1), nestin and neuron-specific enolase (NSE) in rat BMSC (rBMSC). Rat BMSC labelled by Hoschst33258 were transplanted into striatum of rats to trace migration and distribution. Results rBMSC expressed NSE, NFI and nestin mRNA, and NF1 mRNA and expression was increased with induction of Salvia miltiorrhiza. A small number of hBMSC were stained by anti-nestin, anti-GFAP and anti-S 100. Salvia miltiorrhiza could induce hBMSC to differentiate into neuron-like cells. Some differentiated neuron-like cells, that expressed NSE, beta-tubulin and NF-200, showed typical neuron morphology, but some neuron-like cells also expressed alpha smooth muscle protein, making their neuron identification complicated, rBMSC could migrate and adapted in the host brains after being transplanted. Conclusion Bone marrow stromal cells could express phenotypes of neurons, and Salvia milliorrhiza could induce hBMSC to differentiate into neuron-like cells, If BMSC could be converted into neurons instead of mesenchymal derivatives, they would be an abundant and accessible cellular source to treat a variety of neurological diseases. 展开更多
关键词 bone marrow stromal cell cell transplantation Differentiation NEURON Stem cell Salvia miltiorrhiza
下载PDF
In vitro differentiation of adipose-derived stem cells and bone marrow-derived stromal stem cells into neuronal-like cells 被引量:21
7
作者 Jin Zhou Guoping Tian +9 位作者 Jing'e Wang Xuefeng Cong Xingkai Wu Siyang Zhang Li Li Bing Xu Feng Zhu Xuedan Luo Jian Han Fengjie Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第19期1467-1472,共6页
Adipose-derived stem cells and bone marrow-derived stromal stem cells were co-cultured with untreated or Aβ1-40-treated PC12 cells, or grown in supernatant derived from untreated or Aβ1-40-treated PC12 cells. Analys... Adipose-derived stem cells and bone marrow-derived stromal stem cells were co-cultured with untreated or Aβ1-40-treated PC12 cells, or grown in supernatant derived from untreated or Aβ1-40-treated PC12 cells. Analysis by western blot and quantitative real-time PCR showed that protein levels of Nanog, Oct4, and Sox2, and mRNA levels of miR/125a/3p were decreased, while expression of insulin-like growth factor-2 and neuron specific enolase was increased. In comparison the generation of neuron specific enolase-positive cells was most successful when adipose-derived stem cells were co-cultured with Aβ1-40-treated PC12 cells. Our results demonstrate that adipose-derived stem cells and bone marrow-derived stromal stem cells exhibit trends of neuronal-like cell differentiation after co-culture with Aβ1-40-treated PC12 cells. This process may relate to a downregulation of miR-125a-3p mRNA expression and increased levels of insulin-like growth factor-2 expression. 展开更多
关键词 adipose-derived stem cells bone marrow-derived stromal stem cells DIFFERENTIATION NEURON miR-125a-3p neural regeneration
下载PDF
Cell transplantation for the treatment of spinal cord injury–bone marrow stromal cells and choroid plexus epithelial cells 被引量:9
8
作者 Chizuka Ide Norihiko Nakano Kenji Kanekiyo 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第9期1385-1388,共4页
Transplantation of bone marrow stromal cells (BMSCs) enhanced the outgrowth of regenerating axons and promoted locomotor improvements of rats with spinal cord injury (SCI). BMSCs did not survive long-term, disappe... Transplantation of bone marrow stromal cells (BMSCs) enhanced the outgrowth of regenerating axons and promoted locomotor improvements of rats with spinal cord injury (SCI). BMSCs did not survive long-term, disappearing from the spinal cord within 2-3 weeks after transplantation. Astrocyte-devoid areas, in which no astrocytes or oligodendrocytes were found, formed at the epicenter of the lesion. It was remarkable that numerous regenerating axons extended through such astrocyte-devoid areas. Regenerating axons were associated with Schwann cells embedded in extracellular matrices. Transplantation of choroid plexus epithelial cells (CPECs) also enhanced axonal regeneration and locomotor improvements in rats with SCI. Although CPECs disappeared from the spinal cord shortly after transplantation, an extensive outgrowth of regenerating axons occurred through astrocyte-devoid areas, as in the case of BMSC transplantation. These findings suggest that BMSCs and CPECs secret neurotrophic factors that promote tissue repair of the spinal cord, including axonal regeneration and reduced cavity formation. This means that transplantation of BMSCs and CPECs promotes "intrinsic" ability of the spinal cord to regenerate. The treatment to stimu- late the intrinsic regeneration ability of the spinal cord is the safest method of clinical application for SCI. It should be emphasized that the generally anticipated long-term survival, proliferation and differentiation of transplanted cells are not necessarily desirable from the clinical point of view of safety. 展开更多
关键词 bone marrow stromal cell choroid plexus epithelial cell spinal cord injury axonal regeneration locomotor improvement intrinsic regeneration ability
下载PDF
Millimeter-wave Exposure Promotes the Differentiation of Bone Marrow Stromal Cells into Cells with a Neural Phenotype 被引量:9
9
作者 童叶青 杨朝辉 +5 位作者 杨迪 楚慧款 曲敏 刘冠兰 吴艳 刘胜洪 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2009年第4期409-412,共4页
This study investigated the ability of millimeter-wave (MMW) to promote the differentiation of bone marrow stromal cells (BMSCs) into cells with a neural phenotype. The BMSCs were primarily cultured. At passage 3,... This study investigated the ability of millimeter-wave (MMW) to promote the differentiation of bone marrow stromal cells (BMSCs) into cells with a neural phenotype. The BMSCs were primarily cultured. At passage 3, the cells were induced by β-mercaptoethanol (BME) in combination with MMW or BME alone. The expressions of nucleostemin (NS) and neuron-specific enolase (NSE) were detected by immunofluorescent staining and Western blotting respectively to identify the differentiation. The untreated BMSCs predominately expressed NS. After induced by BME and MMW, the BMSCs exhibited a dramatic decrease in NS expression and increase in NSE expression. The differentiation rate of the cells treated with BME and MMW in combination was significantly higher than that of the cells treated with BME alone (P〈0.05). It was concluded that MMW exposure enhanced the inducing effect of BME on the differentiation of BMSCs into cells with a neural phenotype. 展开更多
关键词 bone marrow stromal cells β-mercaptoethanol MILLIMETER-WAVE NUCLEOSTEMIN neuron specific enolase
下载PDF
Osteogenic differentiation of amniotic fluid mesenchymal stromal cells and their bone regeneration potential 被引量:5
10
作者 Caterina Pipino Assunta Pandolfi 《World Journal of Stem Cells》 SCIE CAS 2015年第4期681-690,共10页
In orthopedics, tissue engineering approach using stem cells is a valid line of treatment for patients with bone defects. In this context, mesenchymal stromal cells of various origins have been extensively studied and... In orthopedics, tissue engineering approach using stem cells is a valid line of treatment for patients with bone defects. In this context, mesenchymal stromal cells of various origins have been extensively studied and continue to be a matter of debate. Although mesenchymal stromal cells from bone marrow are already clinically applied, recent evidence suggests that one may use mesenchymal stromal cells from extra-embryonic tissues, such as amniotic fluid, as an innovative andadvantageous resource for bone regeneration. The use of cells from amniotic fluid does not raise ethical problems and provides a sufficient number of cells without invasive procedures. Furthermore, they do not develop into teratomas when transplanted, a consequence observed with pluripotent stem cells. In addition, their multipotent differentiation ability, low immunogenicity, and anti-inflammatory properties make them ideal candidates for bone regenerative medicine. We here present an overview of the features of amniotic fluid mesenchymal stromal cells and their potential in the osteogenic differentiation process. We have examined the papers actually available on this regard, with particular interest in the strategies applied to improve in vitro osteogenesis. Importantly, a detailed understanding of the behavior of amniotic fluid mesenchymal stromal cells and their osteogenic ability is desirable considering a feasible application in bone regenerative medicine. 展开更多
关键词 MESENCHYMAL stromal cells Amniotic FLUID Amniotic FLUID MESENCHYMAL stromal cells Amniotic fluidstem cells OSTEOGENESIS bone REGENERATION
下载PDF
Multiple myeloma mesenchymal stromal cells: Contribution to myeloma bone disease and therapeutics 被引量:5
11
作者 Antonio Garcia-Gomez Fermin Sanchez-Guijo +2 位作者 M Consuelo del Caizo Jesus F San Miguel Mercedes Garayoa 《World Journal of Stem Cells》 SCIE CAS 2014年第3期322-343,共22页
Multiple myeloma is a hematological malignancy inwhich clonal plasma cells proliferate and accumulate within the bone marrow. The presence of osteolytic le-sions due to increased osteoclast(OC) activity and sup-presse... Multiple myeloma is a hematological malignancy inwhich clonal plasma cells proliferate and accumulate within the bone marrow. The presence of osteolytic le-sions due to increased osteoclast(OC) activity and sup-pressed osteoblast(OB) function is characteristic of the disease. The bone marrow mesenchymal stromal cells(MSCs) play a critical role in multiple myeloma patho-physiology, greatly promoting the growth, survival, drug resistance and migration of myeloma cells. Here, we specifically discuss on the relative contribution of MSCs to the pathophysiology of osteolytic lesions in light of the current knowledge of the biology of my-eloma bone disease(MBD), together with the reported genomic, functional and gene expression differences between MSCs derived from myeloma patients(pMSCs) and their healthy counterparts(dMSCs). Being MSCs the progenitors of OBs, pMSCs primarily contribute to the pathogenesis of MBD because of their reduced osteogenic potential consequence of multiple OB inhibi-tory factors and direct interactions with myeloma cells in the bone marrow. Importantly, pMSCs also readily contribute to MBD by promoting OC formation and ac-tivity at various levels(i.e., increasing RANKL to OPG expression, augmenting secretion of activin A, uncou-pling ephrinB2-EphB4 signaling, and through augment-ed production of Wnt5a), thus further contributing to OB/OC uncoupling in osteolytic lesions. In this review, we also look over main signaling pathways involved in the osteogenic differentiation of MSCs and/or OB activity, highlighting amenable therapeutic targets; in parallel, the reported activity of bone-anabolic agents(at preclinical or clinical stage) targeting those signaling pathways is commented. 展开更多
关键词 Mesenchymal stromal cells Multiple myelo-ma OSTEOLYTIC lesions MYELOMA bone disease bone-directed therapy bone-anabolic drugs
下载PDF
Adipose-derived stromal cells resemble bone marrow stromal cells in hepatocyte differentiation potential in vitro and in vivo 被引量:7
12
作者 Li-juan Xu Shu-fang Wang +5 位作者 De-Qing Wang Lian-jun Ma Zheng Chen Qian-Qian Chen Jun Wang Li Yan 《World Journal of Gastroenterology》 SCIE CAS 2017年第38期6973-6982,共10页
AIM To investigate whether mesenchymal stem cells(MSCs) from adipose-derived stromal cells(ADSCs) and bone marrow stromal cells(BMSCs) have similar hepatic differentiation potential.METHODS Mouse ADSCs and BMSCs were ... AIM To investigate whether mesenchymal stem cells(MSCs) from adipose-derived stromal cells(ADSCs) and bone marrow stromal cells(BMSCs) have similar hepatic differentiation potential.METHODS Mouse ADSCs and BMSCs were isolated and cultured. Their morphological and phenotypic characteristics, as well as their multiple differentiation capacity were compared. A new culture system was established to induce ADSCs and BMSCs into functional hepatocytes. Reverse transcription polymerase chain reaction, Western blot, and immunofluorescence analyses were performed to identify the induced hepatocytelike cells. CM-Dil-labeled ADSCs and BMSCs were then transplanted into a mouse model of CCl4-induced acute liver failure. fluorescence microscopy was used to track the transplanted MSCs. Liver function was tested by an automatic biochemistry analyzer, and liver tissue histology was observed by hematoxylin and eosin(HE) staining.RESULTS ADSCs and BMSCs shared a similar morphology and multiple differentiation capacity, as well as a similar phenotype(with expression of CD29 and CD90 and no expression of CD11 b or CD45). Morphologically, ADSCs and BMSCs became round and epithelioid following hepatic induction. These two cell types differentiated into hepatocyte-like cells with similar expression of albumin, cytokeratin 18, cytokeratin 19, alpha fetoprotein, and cytochrome P450. fluorescence microscopy revealed that both ADSCs and BMSCs were observed in the mouse liver at different time points. Compared to the control group, both the function of the injured livers and HE staining showed significant improvement in the ADSC-and BMSC-transplanted mice. There was no significant difference between the two MSC groups.CONCLUSION ADSCs share a similar hepatic differentiation capacity and therapeutic effect with BMSCs in an acute liver failure model. ADSCs may represent an ideal seed cell type for cell transplantation or a bio-artificial liver support system. 展开更多
关键词 Adipose-derived stromal cells bone marrow stromal cells cell differentiation Hepatocyte differentiation
下载PDF
Intra-portal transplantation of bone marrow stromal cells ameliorates liver fibrosis in mice 被引量:4
13
作者 Zheng, Jin-Fang Liang, Li-Jian 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2008年第3期264-270,共7页
BACKGROUND: Bone marrow cells can differentiate into hepatocytes in a suitable microenvironment. This study was undertaken to investigate the effects of transplanted bone marrow stromal cells (BMSCs) on liver fibrosis... BACKGROUND: Bone marrow cells can differentiate into hepatocytes in a suitable microenvironment. This study was undertaken to investigate the effects of transplanted bone marrow stromal cells (BMSCs) on liver fibrosis in mice. METHODS: BMSCs were harvested and cultured from male BALB/c mice, then transplanted into female syngenic BALB/c mice via the portal vein. After partial hepatectomy, diethylnitrosamine (DEN) was administered to induce liver fibrosis. Controls received BMSCs and non-supplemented drinking water, the model group received DEN with their water, and the experimental group received BMSCs and DEN. Mice were killed after 3 months, and ALT, AST, hyaluronic acid (HA), and laminin (LN) in serum and hydroxyproline (Hyp) in the liver were assessed. Alpha-smooth muscle actin (alpha-SMA) in the liver was assessed by immunohistochemistry. Bone marrow-derived hepatocytes were identified by fluorescent in situ hybridization (FISH) in liver sections. RESULTS: BMSCs were shown to differentiate into hepatocyte-like phenotypes after hepatocyte growth factor treatment in vitro. Serum ALT, AST, HA, and LN were markedly reduced by transplanted BMSCs. Liver Hyp content and alpha-SMA staining in mice receiving BMSCs were lower than in the model group, consistent with altered liver pathology. FISH analysis revealed the presence of donor-derived hepatocytes in the injured liver after cross-gender mouse BMSC transplantation. After three months, about 10% of cells in the injured liver were bone marrow-derived. CONCLUSION: BMSCs transplanted via the portal vein can convert into hepatocytes to repair liver injury induced by DEN, restore liver function, and reduce liver fibrosis. 展开更多
关键词 bone marrow stromal cell HEPATOCYTE differentiation cell therapy liver fibrosis
下载PDF
Expression of Neuropilin-1 Gene in Bone Marrow Stromal Cells from Patients with Myeloid Leukemia and Normal Individuals
14
作者 宿颖 王震 +4 位作者 吴秀丽 黄梅娟 陈少华 杨力建 李扬秋 《The Chinese-German Journal of Clinical Oncology》 CAS 2005年第3期171-173,190,共4页
Objective: To investigate the expression of neuropilin-1 (NP-1) gene in bone marrow stromal cells (BMSCs) from myeloid leukemia (AML and CML) and normal individuals. Methods: Mononuclear cells were isolated from bone ... Objective: To investigate the expression of neuropilin-1 (NP-1) gene in bone marrow stromal cells (BMSCs) from myeloid leukemia (AML and CML) and normal individuals. Methods: Mononuclear cells were isolated from bone marrow (BM) of CML (14 cases), AML (12 cases) and normal individuals (20 cases). Adherent cells (i.e. BMSCs) were collected after long-term culture in vitro. The expression of NP-1 gene in three groups was detected respectively by reverse-transcription polymerase chain reaction (RT-PCR). Results: The long-term culture of BMSCs was successfully established. The expression level of NP-1 gene was significantly lower in BMSCs from AML (47.1%) and CML (50%) than in normal individuals (85%). Conclusion: NP-1 gene is expressed in BMSCs from some AML or CML patients and most normal individuals. The low-expression of NP-1 gene in BMSCs from AML or CML patients might be related with abnormality of regulation in hematopoiesis. 展开更多
关键词 neuropilin-1 gene myeloid leukemia bone marrow stromal cell
下载PDF
Study on the adoption of Schwann Cell Phenotype by Bone Marrow Stromal Cells in vitro and in vivo 被引量:4
15
作者 FU-QIANG ZHAO PEI-XUN ZHANG XIANG-JUN HE CHAN DU ZHONG-GUO FU DIAN-YING ZHANG BAO-GUO JIANG 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2005年第5期326-333,共8页
To explore the possibilities of bone marrow stromal cells (MSCs) to adopt Schwann cell phenotype in vitro and in vivo in SD rats. Methods MSCs were obtained from tibia and femur bone marrow and cultured in culture f... To explore the possibilities of bone marrow stromal cells (MSCs) to adopt Schwann cell phenotype in vitro and in vivo in SD rats. Methods MSCs were obtained from tibia and femur bone marrow and cultured in culture flasks. Beta-mercaptoethanol followed by retinoic acid, forskolin, basic-FGF, PDGF and heregulin were added to induce differentiation of MSCs'. Schwann cell markers, p75, S-100 and GFAP were used to discriminate induced properties of MSCs' by immunofluorescent staining. PKH-67-1abelled MSCs were transplanted into the mechanically injured rat sciatic nerve, and laser confocal microscopy was performed to localize the PKH67 labelled MSCs in the injured sciatic nerve two weeks after the operation. Fluorescence PKH67 attenuation rule was evaluated by flow cytometry in vitro. Results MSCs changed morphologically into cells resembling primary cultured Schwann cells after their induction in vitro. In vivo, a large number of MSCs were cumulated within the layer of epineurium around the injured nerve and expressed Schwann cell markers, p75, S- 100, and GFAP. Conclusion MSCs are able to support nerve fiber regeneration and re-myelination by taking on Schwann cell function, and can be potentially used as possible substitutable cells for artificial nerve conduits to promote nerve regeneration. 展开更多
关键词 bone marrow stromal cells DIFFERENTIATION Schwann cells
下载PDF
Effects of Panax notoginseng saponins on hydrogen peroxide-induced apoptosis in cultured rabbit bone marrow stromal cells 被引量:3
16
作者 Hui Qiang1,2,Guang-Sheng Wang3,Chen Zhang1,Zhi-Bin Shi1,Li-Hong Fan1,Kun-Zheng Wang1 1.Department of Orthopedics,the Second Affiliated Hospital,Medical School of Xi’an Jiaotong University,Xi’an 710004 2.Department of Orthopedics,Shaanxi Province People’s Hospital,Xi’an 710068 3.Department of Orthopedics,Huashan Hospital,Baoji 721000,China. 《Journal of Pharmaceutical Analysis》 SCIE CAS 2010年第1期25-29,共5页
Objective To investigate the effects of Panax notoginseng saponins(PNS)on hydrogen peroxide(H2O2)-induced apoptosis in cultured rabbit bone marrow stromal cells(BMSCs).Methods BMSCs from 3-month-old New Zealand rabbit... Objective To investigate the effects of Panax notoginseng saponins(PNS)on hydrogen peroxide(H2O2)-induced apoptosis in cultured rabbit bone marrow stromal cells(BMSCs).Methods BMSCs from 3-month-old New Zealand rabbits were isolated and cultured by the density gradient centrifugation combined with adherent method.The cultured BMSCs were divided into three groups:normal control,H2O2 treatment(100μmol/L),and PNS pretreatment(0.1g/L).Intracellular reactive oxygen species(ROS)levels as the index of oxidative stress were measured by using 2’7’-dichlorodihydrofluorescein diacetate.Flow cytometry was used to observe the apoptosis of BMSCs by staining with annexinV-FITC/PI.The protein expression of Bax in BMSCs was analyzed by Western blotting.Activity of caspase-3 enzyme was measured by spectrofluorometry.Results Pretreatment with PNS significantly decreased intracellular ROS level induced by H2O2(P<0.01).PNS markedly attenuated H2O2-induced apoptosis rate from 38.68% to 19.24%(P<0.01).PNS reversed H2O2-induced augmentation of Bax expression.Furthermore,PNS markedly reduced the altered in activity of caspase-3 enzyme induced by H2O2(P<0.01).Conclusion PNS has a protective effect on hydrogen peroxide-induced apoptosis in cultured rabbit BMSCs by scavenging ROS and decreasing Bax expression and caspase-3 activity. 展开更多
关键词 Panax notoginseng saponins reactive oxygen species bone marrow stromal cell APOPTOSIS BAX
下载PDF
CHIP regulates bone mass by targeting multiple TRAF family members in bone marrow stromal cells 被引量:5
17
作者 Tingyu Wang Shan Li +5 位作者 Dan Yi Guang-Qian Zhou Zhijie Chang Peter X.Ma Guozhi Xiao Di Chen 《Bone Research》 CAS CSCD 2018年第2期145-154,共10页
Carboxyl terminus of Hsp70-interacting protein(CHIP or STUB1) is an E3 ligase and regulates the stability of several proteins which are involved in different cellular functions. Our previous studies demonstrated tha... Carboxyl terminus of Hsp70-interacting protein(CHIP or STUB1) is an E3 ligase and regulates the stability of several proteins which are involved in different cellular functions. Our previous studies demonstrated that Chip deficient mice display bone loss phenotype due to increased osteoclast formation through enhancing TRAF6 activity in osteoclasts. In this study we provide novel evidence about the function of CHIP. We found that osteoblast differentiation and bone formation were also decreased in Chip KO mice. In bone marrow stromal(BMS) cells derived from Chip^-/- mice, expression of a panel of osteoblast marker genes was significantly decreased. ALP activity and mineralized bone matrix formation were also reduced in Chip-deficient BMS cells. We also found that in addition to the regulation of TRAF6, CHIP also inhibits TNFα-induced NF-κB signaling through promoting TRAF2 and TRAF5 degradation. Specific deletion of Chip in BMS cells downregulated expression of osteoblast marker genes which could be reversed by the addition of NF-κB inhibitor. These results demonstrate that the osteopenic phenotype observed in Chip^-/- mice was due to the combination of increased osteoclast formation and decreased osteoblast differentiation. Taken together, our findings indicate a significant role of CHIP in bone remodeling. 展开更多
关键词 CHIP regulates bone mass targeting multiple TRAF family members marrow stromal cells
下载PDF
Granulocyte-macrophage colony-stimulating factor-transfected bone marrow stromal cells for the treatment of ischemic stroke 被引量:2
18
作者 Xingjian Lin Yingdong Zhang +4 位作者 Weiguo Liu Jingde Dong Jie Lu Qing Di Jingping Shi 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第16期1220-1227,共8页
Adult, male, Sprague-Dawley rats were injected with granulocyte-macrophage colony-stimulating factor-transfected bone marrow stromal cells (GM-CSF-BMSCs) into the ischemic boundary zone at 24 hours after onset of mi... Adult, male, Sprague-Dawley rats were injected with granulocyte-macrophage colony-stimulating factor-transfected bone marrow stromal cells (GM-CSF-BMSCs) into the ischemic boundary zone at 24 hours after onset of middle cerebral artery occlusion. Results showed reduced infarct volume, decreased number of apoptotic cells, improved neurological functions, increased angiogenic factor expression, and increased vascular density in the ischemic boundary zone in rats that underwent GM-CSF-BMSCs transplantation compared with the BMSCs group. Experimental findings suggested that GM-CSF-BMSCs could serve as a potential therapeutic strategy for ischemic stroke and are superior to BMSCs alone. 展开更多
关键词 bone marrow stromal cells granulocyte-macrophage colony-stimulating factor gene transfection ischemic stroke TRANSPLANTATION stem cells neural regeneration
下载PDF
Co-transplantation of Schwann cells and bone marrow stromal cells versus single cell transplantation on repairing hemisected spinal cord injury of rats 被引量:2
19
作者 Jifei Zhang Geng Wu +1 位作者 Fusheng Zhao Xiudong Jin 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第11期805-813,共9页
BACKGROUND: Bone marrow stromal cells (BMSCs) or Schwann cells (SCs) transplantation alone can treat spinal cord injury. However, the transplantation either cell-type alone has disadvantages. The co-transplantati... BACKGROUND: Bone marrow stromal cells (BMSCs) or Schwann cells (SCs) transplantation alone can treat spinal cord injury. However, the transplantation either cell-type alone has disadvantages. The co-transplantation of both cells may benefit structural reconstruction and functional recovery of spinal nerves. OBJECTIVE: To verify spinal cord repair and related mechanisms after co-transplantation of BMSCs and SCs in a rat model of hemisected spinal cord injury. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Department of Histology and Embryology, Mudanjiang Medical College from January 2008 to May 2009. MATERIALS: Rabbit anti-S-100, glial fibrillary acidic protein, neuron specific enolase and neurofilament-200 monoclonal antibodies were purchased from Sigma, USA. METHODS: A total of 100 Wistar rats were used in a model of hemisected spinal cord injury. The rats were randomly assigned to vehicle control, SCs transplantation, BMSCs transplantation, and co-transplantation groups; 25 rats per group. At 1 week after modeling, SCs or BMSCs cultured in vitro were labeled and injected separately into the hemisected spinal segment of SCs and BMSCs transplantation groups through three injection points [5 μL (1 x 107 cells/mL)] cell suspension in each point). In addition, a 15 μL 1 × 10^7 cells/mL SCs suspension and a 15 μL 1 × 10^7 cells/mL BMSC suspension were injected into co-transplantation group by the above method. MAIN OUTCOME MEASURES: The Basso-Beattie-Bresnahan (BBB) locomotor rating scale and somatosensory evoked potential (SEP) tests were used to assess the functional recovery of rat hind limbs following operation. Structural repair of injured nerve tissue was observed by light microscopy, electron microscopy, immunohistochemistry, and magnetic resonance imaging (MRI). In vivo differentiation, survival and migration of BMSCs were evaluated by immunofluorescence. RESULTS: BBB scores were significantly greater in all three transplantation groups compared with vehicle control group 8 weeks after transplantation. In particular, the co-transplantation group displayed the highest scores among the groups (P 〈 0.05). Moreover, recovery of SEP latency and amplitude was observed in all the transplantation groups, particularly after 8 weeks. Again, the co-transplantation group exhibited the greatest improvement (P 〈 0.05). In the co-transplantation group, imaging showed a smooth surface and intact inner structure at the injury site, with no scar formation, and a large number of orderly cells at the injured site. Axonal regeneration, new myelination, and a large amount of cell division were detected in the co-transplantation group by electron microscopy. Neuron specific enolase (NSE)- and glial fibriilary acidic protein (GFAP)-positive cells were observed in the spinal cord sections 1 week following co-transplantation by immunofluorescence staining. CONCLUSION: Co-transplantation of SCs and BMSCs effectively promoted functional recovery of injured spinal cord in rats compared with SCs or BMSCs transplantation alone. This repair effect is probably achieved because of neuronal-like cells derived from BMSCs to supplement dead neurons in vivo. 展开更多
关键词 bone marrow stromal cells Schwann cells CO-TRANSPLANTATION spinal cord injury neural regeneration
下载PDF
TrkA regulates the regenerative capacity of bone marrow stromal stem cells in nerve grafts 被引量:3
20
作者 Mei-Ge Zheng Wen-Yuan Sui +8 位作者 Zhen-Dan He Yan Liu Yu-Lin Huang Shu-Hua Mu Xin-Zhong Xu Ji-Sen Zhang Jun-Le Qu Jian Zhang Dong Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第10期1765-1771,共7页
We previously demonstrated that overexpression of tropomyosin receptor kinase A(TrkA)promotes the survival and Schwann celllike differentiation of bone marrow stromal stem cells in nerve grafts,thereby enhancing the r... We previously demonstrated that overexpression of tropomyosin receptor kinase A(TrkA)promotes the survival and Schwann celllike differentiation of bone marrow stromal stem cells in nerve grafts,thereby enhancing the regeneration and functional recovery of the peripheral nerve.In the present study,we investigated the molecular mechanisms underlying the neuroprotective effects of TrkA in bone marrow stromal stem cells seeded into nerve grafts.Bone marrow stromal stem cells from Sprague-Dawley rats were infected with recombinant lentivirus vector expressing rat TrkA,TrkA-shRNA or the respective control.The cells were then seeded into allogeneic rat acellular nerve allografts for bridging a 1-cm right sciatic nerve defect.Then,8 weeks after surgery,hematoxylin and eosin staining showed that compared with the control groups,the cells and fibers in the TrkA overexpressing group were more densely and uniformly arranged,whereas they were relatively sparse and arranged in a disordered manner in the TrkA-shRNA group.Western blot assay showed that compared with the control groups,the TrkA overexpressing group had higher expression of the myelin marker,myelin basic protein and the axonal marker neurofilament 200.The TrkA overexpressing group also had higher levels of various signaling molecules,including TrkA,pTrkA(Tyr490),extracellular signal-regulated kinases 1/2(Erkl/2),pErk1/2(Thr202/Tyr204),and the anti-apoptotic proteins Bcl-2 and Bcl-xL.In contrast,these proteins were downregulated,while the pro-apoptotic factors Bax and Bad were upregulated,in the TrkA-shRNA group.The levels of the TrkA effectors Akt and pAkt(Ser473)were not different among the groups.These results suggest that TrkA enhances the survival and regenerative capacity of bone marrow stromal stem cells through upregulation of the Erk/Bcl-2 pathway.All procedures were approved by the Animal Ethical and Welfare Committee of Shenzhen University,China in December 2014(approval No.AEWC-2014-001219). 展开更多
关键词 NERVE REGENERATION bone marrow stromal stem cells TROPOMYOSIN RECEPTOR kinase A RECEPTOR LENTIVIRAL vector shRNA extracellular SIGNAL-REGULATED protein kinases 1/2 Bcl-2 NERVE grafts peripheral NERVE REGENERATION survival neural REGENERATION
下载PDF
上一页 1 2 99 下一页 到第
使用帮助 返回顶部