期刊文献+
共找到2,297篇文章
< 1 2 115 >
每页显示 20 50 100
Overexpression of lentivirus-mediated glial cell line-derived neurotrophic factor in bone marrow stromal cells and its neuroprotection for the PC12 cells damaged by lactacystin 被引量:1
1
作者 苏雅茹 王坚 +2 位作者 邬剑军 陈嬿 蒋雨平 《Neuroscience Bulletin》 SCIE CAS CSCD 2007年第2期67-74,共8页
Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by... Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by transfecting it into bone marrow stromal cells (BMSCs). Methods pLenti6/V5-GDNF plasmid was set up by double restriction enzyme digestion and ligation, and then the plasmid was transformed into Top10 cells. Purified pLenti6/V5-GDNF plasmids from the positive clones and the packaging mixture were cotransfected to the 293FT packaging cell line by Lipofectamine2000 to produce lentivirus, then the concentrated virus was transduced to BMSCs. Overexpression of GDNF in BMSCs was tested by RT-PCR, ELISA and immunocytochemistry, and its neuroprotection for lactacystin-damaged PC12 cells was evaluated by MTT assay. Results Virus stock of GDNF was harvested with the titer of 5.6×10^5 TU/mL. After tmnsduction, GDNF-BMSCs successfully secreted GDNF to supematant with nigher concentration (800 pg/mL) than BMSCs did (less than 100 pg/mL). The supematant of GDNF-BMSCs could significantly alleviate the damage of PC12 cells induced by lactacystin (10 μmol/L). Conclusion Overexpression of lentivirus-mediated GDNF in the BMSCs cells can effectively protect PC12 cells from the injury by the proteasome inhibitor. 展开更多
关键词 Parkinson' s disease proteasome inhibitor glial cell line-derived neurotropnic factor LENTIVIRUS gene therapy bone marrow stromal cells
下载PDF
O-linkedβ-N-acetylglucosaminylation may be a key regulatory factor in promoting osteogenic differentiation of bone marrow mesenchymal stromal cells
2
作者 Xu-Chang Zhou Guo-Xin Ni 《World Journal of Stem Cells》 SCIE 2024年第3期228-231,共4页
Cumulative evidence suggests that O-linkedβ-N-acetylglucosaminylation(OGlcNAcylation)plays an important regulatory role in pathophysiological processes.Although the regulatory mechanisms of O-GlcNAcylation in tumors ... Cumulative evidence suggests that O-linkedβ-N-acetylglucosaminylation(OGlcNAcylation)plays an important regulatory role in pathophysiological processes.Although the regulatory mechanisms of O-GlcNAcylation in tumors have been gradually elucidated,the potential mechanisms of O-GlcNAcylation in bone metabolism,particularly,in the osteogenic differentiation of bone marrow mesenchymal stromal cells(BMSCs)remains unexplored.In this study,the literature related to O-GlcNAcylation and BMSC osteogenic differentiation was reviewed,assuming that it could trigger more scholars to focus on research related to OGlcNAcylation and bone metabolism and provide insights into the development of novel therapeutic targets for bone metabolism disorders such as osteoporosis. 展开更多
关键词 O-GLCNACYLATION Osteogenic differentiation bone marrow mesenchymal stromal cells OSTEOPOROSIS
下载PDF
miR-124 and miR-128 differential expression in bone marrow stromal cells and spinal cord-derived neural stem cells 被引量:1
3
作者 Chunfang Wang Hongen Wei +3 位作者 Chuansen Zhang Pengfei Li Fei Wang Shufeng Han 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第11期820-824,共5页
BACKGROUND: MicroRNA (miRNA) expression in stem cells provides important clues for the molecular mechanisms of stem cell proliferation and differentiation. Bone marrow stromal cells and spinal cord-derived neural s... BACKGROUND: MicroRNA (miRNA) expression in stem cells provides important clues for the molecular mechanisms of stem cell proliferation and differentiation. Bone marrow stromal cells and spinal cord-derived neural stem cells exhibit potential for neural regeneration. However, miRNA expression in these cells has been rarely reported. OBJECTIVE: To explore differential expression of two nervous system-specific miRNAs, miR-124 and miR-128, in bone marrow stromal cells and spinal cord-derived neural stem cells. DESIGN, TIME AND SETTING: An In vitro, cell biology experiment was performed at the Department of Biotechnology, Shanxi Medical University from June 2008 to June 2009. MATERIALS: TaqMan miRNA assays were purchased from Applied Biosystems. METHODS: Rat bone marrow stromal cells were isolated and cultured using the whole-bone marrow method, and rat spinal cord-derived neural stem cells were obtained through neurosphere formation. TaqMan miRNA assays were used to measure miR-124 and miR-128 expression in bone marrow stromal cells and spinal cord-derived neural stem cells. MAIN OUTCOME MEASURES: Morphology of bone marrow stromal cells and spinal cord-derived neural stem cells were observed by inverted microscopy. Expression of the neural stem cell-specific marker, nestin, the bone marrow stromal cell surface marker, CD71, and expression of miR-124 and miR-128, were detected by real-time polymerase chain reaction. RESULTS: Cultured bone marrow stromal cells displayed a short fusiform shape. Flow cytometry revealed a large number of CD71-positive cells (〉 95%). Cultured spinal cord-derived neural stem cells formed nestin-positive neurospheres, and quantitative detection of miRNA demonstrated that less miR-124 and miR-128 was expressed in bone marrow stromal cells compared to spinal cord-derived neural stem cells (P 〈 0.05). CONCLUSION: Bone marrow stromal cells and spinal cord-derived neural stem cells exhibited differential expression of miR-124 and miR-128, which suggested different characteristics in miRNA expression. 展开更多
关键词 bone marrow stromal cells spinal cord-derived neural stem cells miR-124 miR-128 spinal cord injury
下载PDF
Bone Marrow Stromal Cells Express Neural Phenotypes in vitro and Migrate in Brain After Transplantation in vivo 被引量:29
4
作者 LI-YE YAN TIAN-HUA HUANG LIAN MA 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2006年第5期329-335,共7页
Objective To investigate the differentiation of bone marrow stromal cells (BMSC) into neuron-like cells and to explore their potential use for neural transplantation. Methods BMSC from rats and adult humans were cul... Objective To investigate the differentiation of bone marrow stromal cells (BMSC) into neuron-like cells and to explore their potential use for neural transplantation. Methods BMSC from rats and adult humans were cultured in serum-containing media. Salvia miltiorrhiza was used to induce human BMSC (hBMSC) to differentiate. BMSC were identified with immunocytochemistry. Semi-quantitative RT-PCR was used to examine mRNA expression of neurofilamentl (NF1), nestin and neuron-specific enolase (NSE) in rat BMSC (rBMSC). Rat BMSC labelled by Hoschst33258 were transplanted into striatum of rats to trace migration and distribution. Results rBMSC expressed NSE, NFI and nestin mRNA, and NF1 mRNA and expression was increased with induction of Salvia miltiorrhiza. A small number of hBMSC were stained by anti-nestin, anti-GFAP and anti-S 100. Salvia miltiorrhiza could induce hBMSC to differentiate into neuron-like cells. Some differentiated neuron-like cells, that expressed NSE, beta-tubulin and NF-200, showed typical neuron morphology, but some neuron-like cells also expressed alpha smooth muscle protein, making their neuron identification complicated, rBMSC could migrate and adapted in the host brains after being transplanted. Conclusion Bone marrow stromal cells could express phenotypes of neurons, and Salvia milliorrhiza could induce hBMSC to differentiate into neuron-like cells, If BMSC could be converted into neurons instead of mesenchymal derivatives, they would be an abundant and accessible cellular source to treat a variety of neurological diseases. 展开更多
关键词 bone marrow stromal cell cell transplantation Differentiation NEURON Stem cell Salvia miltiorrhiza
下载PDF
Glial cell-derived neurotrophic factor mRNA expression in a rat model of spinal cord injury following bone marrow stromal cell transplantation 被引量:13
5
作者 Lei Li Gang Lu +5 位作者 Yanfeng Wang Hong Gao XinXu Lunhao Bai Lunhao Bai Huan Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第10期1056-1059,共4页
BACKGROUND: Several animal experiments utilizing bone marrow stromal cell (BMSC) transplantation for the treatment of spinal cord injury have proposed a hypothesis that BMSC transplantation effects are associated w... BACKGROUND: Several animal experiments utilizing bone marrow stromal cell (BMSC) transplantation for the treatment of spinal cord injury have proposed a hypothesis that BMSC transplantation effects are associated with increased glial cell-derived neurotrophic factor (GDNF) expression. OBJECTIVE: To confirm the effects of BMSC transplantation on GDNF mRNA expression in rats with spinal cord injury by reverse transcription-polymerase chain reaction (RT-PCR). DESIGN, TIME AND SETTING: The present molecular, cell biology experiment was performed at the Key Laboratory of Children's Congenital Malformation, Ministry of Health of China & Department of Developmental Biology, Basic Medical College, China Medical University between March 2006 and May 2007. MATERIALS: Sixty healthy Wistar rats aged 2-4-months and of either gender were included in this study. Spinal cord injury was induced in all rats by hemisection of T9 on the left side. RT-PCR kits were purchased from TaKaRa Company, China. Type 9600 RCR amplifier was provided by Perkin Elmer Company, USA. METHODS: Three rats were selected for BMSC culture and subsequent transplantation (after three passages). Of the remaining 57 rats, nine were selected for sham-operation (sham-operated group), where only the T9 spinal cord was exposed without hemisection. A total of 48 rats were randomly and evenly divided into BMSC transplantation and model groups. In the BMSC transplantation group, following spinal cord injury induction, each rat was administered a BMSC suspension tbrougb two injection sites selected on the gray and white matter boundary caudally and cephalically, seperately and near to injury site in the spinal cord. The model group received an equal volume of PBS through the identical injection sites. MAIN OUTCOME MEASURES: At 24 and 72 hours, as well as at 7 days, following spinal cord injury, the spinal cord at the T9 segment was removed. Eight rats were allocated to each time point in the BMSC transplantation and model groups, with three rats allocated to the sham-operated group. GDNF mRNA expression was semiquantitatively analyzed by RT-PCR. RESULTS: The sham-operated group exhibited extremely low GDNF mRNA expression. GDNF mRNA expression significantly increased at 24 hours after spinal cord injury, reached a peak level at 72 hours, and slowly decreased thereafter. However, it remained higher than normal levels at 7 days (P 〈 0.05). At all time points following spinal cord injury, GDNF mRNA expression was significantly greater in the BMSC transplantation group than in the model group (P 〈 0.05). CONCLUSION: Transplantation of BMSCs into the injured spinal cord up-regulated GDNF mRNA expression, thereby promoting repair of the injured spinal cord. 展开更多
关键词 bone marrow stromal cells neurotrophic factors spinal cord injury TRANSPLANTATION
下载PDF
Cell transplantation for the treatment of spinal cord injury–bone marrow stromal cells and choroid plexus epithelial cells 被引量:9
6
作者 Chizuka Ide Norihiko Nakano Kenji Kanekiyo 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第9期1385-1388,共4页
Transplantation of bone marrow stromal cells (BMSCs) enhanced the outgrowth of regenerating axons and promoted locomotor improvements of rats with spinal cord injury (SCI). BMSCs did not survive long-term, disappe... Transplantation of bone marrow stromal cells (BMSCs) enhanced the outgrowth of regenerating axons and promoted locomotor improvements of rats with spinal cord injury (SCI). BMSCs did not survive long-term, disappearing from the spinal cord within 2-3 weeks after transplantation. Astrocyte-devoid areas, in which no astrocytes or oligodendrocytes were found, formed at the epicenter of the lesion. It was remarkable that numerous regenerating axons extended through such astrocyte-devoid areas. Regenerating axons were associated with Schwann cells embedded in extracellular matrices. Transplantation of choroid plexus epithelial cells (CPECs) also enhanced axonal regeneration and locomotor improvements in rats with SCI. Although CPECs disappeared from the spinal cord shortly after transplantation, an extensive outgrowth of regenerating axons occurred through astrocyte-devoid areas, as in the case of BMSC transplantation. These findings suggest that BMSCs and CPECs secret neurotrophic factors that promote tissue repair of the spinal cord, including axonal regeneration and reduced cavity formation. This means that transplantation of BMSCs and CPECs promotes "intrinsic" ability of the spinal cord to regenerate. The treatment to stimu- late the intrinsic regeneration ability of the spinal cord is the safest method of clinical application for SCI. It should be emphasized that the generally anticipated long-term survival, proliferation and differentiation of transplanted cells are not necessarily desirable from the clinical point of view of safety. 展开更多
关键词 bone marrow stromal cell choroid plexus epithelial cell spinal cord injury axonal regeneration locomotor improvement intrinsic regeneration ability
下载PDF
Millimeter-wave Exposure Promotes the Differentiation of Bone Marrow Stromal Cells into Cells with a Neural Phenotype 被引量:9
7
作者 童叶青 杨朝辉 +5 位作者 杨迪 楚慧款 曲敏 刘冠兰 吴艳 刘胜洪 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2009年第4期409-412,共4页
This study investigated the ability of millimeter-wave (MMW) to promote the differentiation of bone marrow stromal cells (BMSCs) into cells with a neural phenotype. The BMSCs were primarily cultured. At passage 3,... This study investigated the ability of millimeter-wave (MMW) to promote the differentiation of bone marrow stromal cells (BMSCs) into cells with a neural phenotype. The BMSCs were primarily cultured. At passage 3, the cells were induced by β-mercaptoethanol (BME) in combination with MMW or BME alone. The expressions of nucleostemin (NS) and neuron-specific enolase (NSE) were detected by immunofluorescent staining and Western blotting respectively to identify the differentiation. The untreated BMSCs predominately expressed NS. After induced by BME and MMW, the BMSCs exhibited a dramatic decrease in NS expression and increase in NSE expression. The differentiation rate of the cells treated with BME and MMW in combination was significantly higher than that of the cells treated with BME alone (P〈0.05). It was concluded that MMW exposure enhanced the inducing effect of BME on the differentiation of BMSCs into cells with a neural phenotype. 展开更多
关键词 bone marrow stromal cells β-mercaptoethanol MILLIMETER-WAVE NUCLEOSTEMIN neuron specific enolase
下载PDF
Chondrogenic Differentiation of Mouse Bone Marrow Mesenchymal Stem Cells Induced by Cartilage-derived Morphogenetic Protein-2 In Vitro 被引量:11
8
作者 田洪涛 杨述华 +2 位作者 徐亮 张宇坤 许伟华 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2007年第4期429-432,共4页
To study the cartilage differentiation of mouse mesenchymal stem cells (MSCs) induced by cartilage-derived morphogenetic proteins-2 in vitro, the MSCs were isolated from mouse bone marrow and cultured in vitro. The ... To study the cartilage differentiation of mouse mesenchymal stem cells (MSCs) induced by cartilage-derived morphogenetic proteins-2 in vitro, the MSCs were isolated from mouse bone marrow and cultured in vitro. The cells in passage 3 were induced into chondrogenic differentiation with different concentrations of recombinant human cartilage-derived morphogenetic proteins-2 (0, 10, 20, 50 and 100 ng/mL). After 14 days of induction, morphology of cells was observed under phase-contrast microscope. Collagen Ⅱ mRNA and protein were examined with RT-PCR, Western blotting and immunocytochemistry respectively and the sulfate glycosaminoglycan was measured by Alcian blue staining. RT-PCR showed that CDMP-2 could promote expression of collagen Ⅱ mRNA in an dose-dependant manner, especially at the concentration of 50 ng/mL and 100 ng/mL. Immunocytochemistry and Western blotting revealed a similar change. Alcian blue staining exhibited deposition of typical cartilage extracellular matrix. Our results suggest that mouse bone marrow mesencymal stem cells can differentiate into chondrogenic phonotype with the induction of CDMP-2 in vitro, which provides a basis for further research on the role of CDMP-2 in chondrogenesis. 展开更多
关键词 cartilage-derived morphogenetic proteins-2 bone marrow mesenchymal stem cell chondrogenic differentiation MOUSE
下载PDF
Adipose-derived stromal cells resemble bone marrow stromal cells in hepatocyte differentiation potential in vitro and in vivo 被引量:7
9
作者 Li-juan Xu Shu-fang Wang +5 位作者 De-Qing Wang Lian-jun Ma Zheng Chen Qian-Qian Chen Jun Wang Li Yan 《World Journal of Gastroenterology》 SCIE CAS 2017年第38期6973-6982,共10页
AIM To investigate whether mesenchymal stem cells(MSCs) from adipose-derived stromal cells(ADSCs) and bone marrow stromal cells(BMSCs) have similar hepatic differentiation potential.METHODS Mouse ADSCs and BMSCs were ... AIM To investigate whether mesenchymal stem cells(MSCs) from adipose-derived stromal cells(ADSCs) and bone marrow stromal cells(BMSCs) have similar hepatic differentiation potential.METHODS Mouse ADSCs and BMSCs were isolated and cultured. Their morphological and phenotypic characteristics, as well as their multiple differentiation capacity were compared. A new culture system was established to induce ADSCs and BMSCs into functional hepatocytes. Reverse transcription polymerase chain reaction, Western blot, and immunofluorescence analyses were performed to identify the induced hepatocytelike cells. CM-Dil-labeled ADSCs and BMSCs were then transplanted into a mouse model of CCl4-induced acute liver failure. fluorescence microscopy was used to track the transplanted MSCs. Liver function was tested by an automatic biochemistry analyzer, and liver tissue histology was observed by hematoxylin and eosin(HE) staining.RESULTS ADSCs and BMSCs shared a similar morphology and multiple differentiation capacity, as well as a similar phenotype(with expression of CD29 and CD90 and no expression of CD11 b or CD45). Morphologically, ADSCs and BMSCs became round and epithelioid following hepatic induction. These two cell types differentiated into hepatocyte-like cells with similar expression of albumin, cytokeratin 18, cytokeratin 19, alpha fetoprotein, and cytochrome P450. fluorescence microscopy revealed that both ADSCs and BMSCs were observed in the mouse liver at different time points. Compared to the control group, both the function of the injured livers and HE staining showed significant improvement in the ADSC-and BMSC-transplanted mice. There was no significant difference between the two MSC groups.CONCLUSION ADSCs share a similar hepatic differentiation capacity and therapeutic effect with BMSCs in an acute liver failure model. ADSCs may represent an ideal seed cell type for cell transplantation or a bio-artificial liver support system. 展开更多
关键词 Adipose-derived stromal cells bone marrow stromal cells cell differentiation Hepatocyte differentiation
下载PDF
Expression of Neuropilin-1 Gene in Bone Marrow Stromal Cells from Patients with Myeloid Leukemia and Normal Individuals
10
作者 宿颖 王震 +4 位作者 吴秀丽 黄梅娟 陈少华 杨力建 李扬秋 《The Chinese-German Journal of Clinical Oncology》 CAS 2005年第3期171-173,190,共4页
Objective: To investigate the expression of neuropilin-1 (NP-1) gene in bone marrow stromal cells (BMSCs) from myeloid leukemia (AML and CML) and normal individuals. Methods: Mononuclear cells were isolated from bone ... Objective: To investigate the expression of neuropilin-1 (NP-1) gene in bone marrow stromal cells (BMSCs) from myeloid leukemia (AML and CML) and normal individuals. Methods: Mononuclear cells were isolated from bone marrow (BM) of CML (14 cases), AML (12 cases) and normal individuals (20 cases). Adherent cells (i.e. BMSCs) were collected after long-term culture in vitro. The expression of NP-1 gene in three groups was detected respectively by reverse-transcription polymerase chain reaction (RT-PCR). Results: The long-term culture of BMSCs was successfully established. The expression level of NP-1 gene was significantly lower in BMSCs from AML (47.1%) and CML (50%) than in normal individuals (85%). Conclusion: NP-1 gene is expressed in BMSCs from some AML or CML patients and most normal individuals. The low-expression of NP-1 gene in BMSCs from AML or CML patients might be related with abnormality of regulation in hematopoiesis. 展开更多
关键词 neuropilin-1 gene myeloid leukemia bone marrow stromal cell
下载PDF
Intra-portal transplantation of bone marrow stromal cells ameliorates liver fibrosis in mice 被引量:4
11
作者 Zheng, Jin-Fang Liang, Li-Jian 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2008年第3期264-270,共7页
BACKGROUND: Bone marrow cells can differentiate into hepatocytes in a suitable microenvironment. This study was undertaken to investigate the effects of transplanted bone marrow stromal cells (BMSCs) on liver fibrosis... BACKGROUND: Bone marrow cells can differentiate into hepatocytes in a suitable microenvironment. This study was undertaken to investigate the effects of transplanted bone marrow stromal cells (BMSCs) on liver fibrosis in mice. METHODS: BMSCs were harvested and cultured from male BALB/c mice, then transplanted into female syngenic BALB/c mice via the portal vein. After partial hepatectomy, diethylnitrosamine (DEN) was administered to induce liver fibrosis. Controls received BMSCs and non-supplemented drinking water, the model group received DEN with their water, and the experimental group received BMSCs and DEN. Mice were killed after 3 months, and ALT, AST, hyaluronic acid (HA), and laminin (LN) in serum and hydroxyproline (Hyp) in the liver were assessed. Alpha-smooth muscle actin (alpha-SMA) in the liver was assessed by immunohistochemistry. Bone marrow-derived hepatocytes were identified by fluorescent in situ hybridization (FISH) in liver sections. RESULTS: BMSCs were shown to differentiate into hepatocyte-like phenotypes after hepatocyte growth factor treatment in vitro. Serum ALT, AST, HA, and LN were markedly reduced by transplanted BMSCs. Liver Hyp content and alpha-SMA staining in mice receiving BMSCs were lower than in the model group, consistent with altered liver pathology. FISH analysis revealed the presence of donor-derived hepatocytes in the injured liver after cross-gender mouse BMSC transplantation. After three months, about 10% of cells in the injured liver were bone marrow-derived. CONCLUSION: BMSCs transplanted via the portal vein can convert into hepatocytes to repair liver injury induced by DEN, restore liver function, and reduce liver fibrosis. 展开更多
关键词 bone marrow stromal cell HEPATOCYTE differentiation cell therapy liver fibrosis
下载PDF
The future of bone marrow stromal cell transplantation for the treatment of spinal cord injury 被引量:6
12
作者 Mitsuhiro Enomoto 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第3期383-384,共2页
Bone marrow stromal cell (BMSC) transplantation therapy is a promising approach for treating spinal cord injury (SCI), based on a number of experimental and clinical reports (Wright et al., 2011). BMSCs are a so... Bone marrow stromal cell (BMSC) transplantation therapy is a promising approach for treating spinal cord injury (SCI), based on a number of experimental and clinical reports (Wright et al., 2011). BMSCs are a source of neuroregenerative somatic stem cells that are without the potential for tumorigenicity. Although clinical studies of autologous BMSC transplantation have been reported in Asia (fiang et al., 2013; Yoon et al., 2007), in Japan, it is currently an uncommon procedure and highly controversial as well. This perspective paper provides an overview of the clinical effectiveness of BMSC trans- 191antation and a proposal to enhance its use as a viable therapy. 展开更多
关键词 BMSCS The future of bone marrow stromal cell transplantation for the treatment of spinal cord injury SCI bone cell
下载PDF
TrkA regulates the regenerative capacity of bone marrow stromal stem cells in nerve grafts 被引量:3
13
作者 Mei-Ge Zheng Wen-Yuan Sui +8 位作者 Zhen-Dan He Yan Liu Yu-Lin Huang Shu-Hua Mu Xin-Zhong Xu Ji-Sen Zhang Jun-Le Qu Jian Zhang Dong Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第10期1765-1771,共7页
We previously demonstrated that overexpression of tropomyosin receptor kinase A(TrkA)promotes the survival and Schwann celllike differentiation of bone marrow stromal stem cells in nerve grafts,thereby enhancing the r... We previously demonstrated that overexpression of tropomyosin receptor kinase A(TrkA)promotes the survival and Schwann celllike differentiation of bone marrow stromal stem cells in nerve grafts,thereby enhancing the regeneration and functional recovery of the peripheral nerve.In the present study,we investigated the molecular mechanisms underlying the neuroprotective effects of TrkA in bone marrow stromal stem cells seeded into nerve grafts.Bone marrow stromal stem cells from Sprague-Dawley rats were infected with recombinant lentivirus vector expressing rat TrkA,TrkA-shRNA or the respective control.The cells were then seeded into allogeneic rat acellular nerve allografts for bridging a 1-cm right sciatic nerve defect.Then,8 weeks after surgery,hematoxylin and eosin staining showed that compared with the control groups,the cells and fibers in the TrkA overexpressing group were more densely and uniformly arranged,whereas they were relatively sparse and arranged in a disordered manner in the TrkA-shRNA group.Western blot assay showed that compared with the control groups,the TrkA overexpressing group had higher expression of the myelin marker,myelin basic protein and the axonal marker neurofilament 200.The TrkA overexpressing group also had higher levels of various signaling molecules,including TrkA,pTrkA(Tyr490),extracellular signal-regulated kinases 1/2(Erkl/2),pErk1/2(Thr202/Tyr204),and the anti-apoptotic proteins Bcl-2 and Bcl-xL.In contrast,these proteins were downregulated,while the pro-apoptotic factors Bax and Bad were upregulated,in the TrkA-shRNA group.The levels of the TrkA effectors Akt and pAkt(Ser473)were not different among the groups.These results suggest that TrkA enhances the survival and regenerative capacity of bone marrow stromal stem cells through upregulation of the Erk/Bcl-2 pathway.All procedures were approved by the Animal Ethical and Welfare Committee of Shenzhen University,China in December 2014(approval No.AEWC-2014-001219). 展开更多
关键词 NERVE REGENERATION bone marrow stromal stem cells TROPOMYOSIN RECEPTOR kinase A RECEPTOR LENTIVIRAL vector shRNA extracellular SIGNAL-REGULATED protein kinases 1/2 Bcl-2 NERVE grafts peripheral NERVE REGENERATION survival neural REGENERATION
下载PDF
Study on the adoption of Schwann Cell Phenotype by Bone Marrow Stromal Cells in vitro and in vivo 被引量:4
14
作者 FU-QIANG ZHAO PEI-XUN ZHANG XIANG-JUN HE CHAN DU ZHONG-GUO FU DIAN-YING ZHANG BAO-GUO JIANG 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2005年第5期326-333,共8页
To explore the possibilities of bone marrow stromal cells (MSCs) to adopt Schwann cell phenotype in vitro and in vivo in SD rats. Methods MSCs were obtained from tibia and femur bone marrow and cultured in culture f... To explore the possibilities of bone marrow stromal cells (MSCs) to adopt Schwann cell phenotype in vitro and in vivo in SD rats. Methods MSCs were obtained from tibia and femur bone marrow and cultured in culture flasks. Beta-mercaptoethanol followed by retinoic acid, forskolin, basic-FGF, PDGF and heregulin were added to induce differentiation of MSCs'. Schwann cell markers, p75, S-100 and GFAP were used to discriminate induced properties of MSCs' by immunofluorescent staining. PKH-67-1abelled MSCs were transplanted into the mechanically injured rat sciatic nerve, and laser confocal microscopy was performed to localize the PKH67 labelled MSCs in the injured sciatic nerve two weeks after the operation. Fluorescence PKH67 attenuation rule was evaluated by flow cytometry in vitro. Results MSCs changed morphologically into cells resembling primary cultured Schwann cells after their induction in vitro. In vivo, a large number of MSCs were cumulated within the layer of epineurium around the injured nerve and expressed Schwann cell markers, p75, S- 100, and GFAP. Conclusion MSCs are able to support nerve fiber regeneration and re-myelination by taking on Schwann cell function, and can be potentially used as possible substitutable cells for artificial nerve conduits to promote nerve regeneration. 展开更多
关键词 bone marrow stromal cells DIFFERENTIATION Schwann cells
下载PDF
Effects of Panax notoginseng saponins on hydrogen peroxide-induced apoptosis in cultured rabbit bone marrow stromal cells 被引量:3
15
作者 Hui Qiang1,2,Guang-Sheng Wang3,Chen Zhang1,Zhi-Bin Shi1,Li-Hong Fan1,Kun-Zheng Wang1 1.Department of Orthopedics,the Second Affiliated Hospital,Medical School of Xi’an Jiaotong University,Xi’an 710004 2.Department of Orthopedics,Shaanxi Province People’s Hospital,Xi’an 710068 3.Department of Orthopedics,Huashan Hospital,Baoji 721000,China. 《Journal of Pharmaceutical Analysis》 SCIE CAS 2010年第1期25-29,共5页
Objective To investigate the effects of Panax notoginseng saponins(PNS)on hydrogen peroxide(H2O2)-induced apoptosis in cultured rabbit bone marrow stromal cells(BMSCs).Methods BMSCs from 3-month-old New Zealand rabbit... Objective To investigate the effects of Panax notoginseng saponins(PNS)on hydrogen peroxide(H2O2)-induced apoptosis in cultured rabbit bone marrow stromal cells(BMSCs).Methods BMSCs from 3-month-old New Zealand rabbits were isolated and cultured by the density gradient centrifugation combined with adherent method.The cultured BMSCs were divided into three groups:normal control,H2O2 treatment(100μmol/L),and PNS pretreatment(0.1g/L).Intracellular reactive oxygen species(ROS)levels as the index of oxidative stress were measured by using 2’7’-dichlorodihydrofluorescein diacetate.Flow cytometry was used to observe the apoptosis of BMSCs by staining with annexinV-FITC/PI.The protein expression of Bax in BMSCs was analyzed by Western blotting.Activity of caspase-3 enzyme was measured by spectrofluorometry.Results Pretreatment with PNS significantly decreased intracellular ROS level induced by H2O2(P<0.01).PNS markedly attenuated H2O2-induced apoptosis rate from 38.68% to 19.24%(P<0.01).PNS reversed H2O2-induced augmentation of Bax expression.Furthermore,PNS markedly reduced the altered in activity of caspase-3 enzyme induced by H2O2(P<0.01).Conclusion PNS has a protective effect on hydrogen peroxide-induced apoptosis in cultured rabbit BMSCs by scavenging ROS and decreasing Bax expression and caspase-3 activity. 展开更多
关键词 Panax notoginseng saponins reactive oxygen species bone marrow stromal cell APOPTOSIS BAX
下载PDF
CHIP regulates bone mass by targeting multiple TRAF family members in bone marrow stromal cells 被引量:5
16
作者 Tingyu Wang Shan Li +5 位作者 Dan Yi Guang-Qian Zhou Zhijie Chang Peter X.Ma Guozhi Xiao Di Chen 《Bone Research》 CAS CSCD 2018年第2期145-154,共10页
Carboxyl terminus of Hsp70-interacting protein(CHIP or STUB1) is an E3 ligase and regulates the stability of several proteins which are involved in different cellular functions. Our previous studies demonstrated tha... Carboxyl terminus of Hsp70-interacting protein(CHIP or STUB1) is an E3 ligase and regulates the stability of several proteins which are involved in different cellular functions. Our previous studies demonstrated that Chip deficient mice display bone loss phenotype due to increased osteoclast formation through enhancing TRAF6 activity in osteoclasts. In this study we provide novel evidence about the function of CHIP. We found that osteoblast differentiation and bone formation were also decreased in Chip KO mice. In bone marrow stromal(BMS) cells derived from Chip^-/- mice, expression of a panel of osteoblast marker genes was significantly decreased. ALP activity and mineralized bone matrix formation were also reduced in Chip-deficient BMS cells. We also found that in addition to the regulation of TRAF6, CHIP also inhibits TNFα-induced NF-κB signaling through promoting TRAF2 and TRAF5 degradation. Specific deletion of Chip in BMS cells downregulated expression of osteoblast marker genes which could be reversed by the addition of NF-κB inhibitor. These results demonstrate that the osteopenic phenotype observed in Chip^-/- mice was due to the combination of increased osteoclast formation and decreased osteoblast differentiation. Taken together, our findings indicate a significant role of CHIP in bone remodeling. 展开更多
关键词 CHIP regulates bone mass targeting multiple TRAF family members marrow stromal cells
下载PDF
Upregulation of UBAP2L in Bone Marrow Mesenchymal Stem Cells Promotes Functional Recovery in Rats with Spinal Cord Injury 被引量:4
17
作者 Guan-lin LIN Huan WANG +5 位作者 Jun DAI Xiao LI Ming GUAN Qing DING Huai-xi WANG Huang FANG 《Current Medical Science》 SCIE CAS 2018年第6期1081-1089,共9页
Post-translational modifications of cellular proteins with ubiquitin or ubiquitin-like proteins regulate many cellular processes,such as cell proliferation,differentiation,apoptosis, signal transduction,intercellular ... Post-translational modifications of cellular proteins with ubiquitin or ubiquitin-like proteins regulate many cellular processes,such as cell proliferation,differentiation,apoptosis, signal transduction,intercellular immune recognition,inflammatory response,stress response,and DNA repair.Nice4/UBAP2L is an important member in the family of ubiquitin-like proteins,and its biological function remains unknown.This study aimed to investigate the effect of UBAP2L on spinal cord injury (SCI).At first,rat bone marrow mesenchymal stem cells (BMSCs)were infected with adeno-associated virus to induce over-expression of Nice4.Subsequently,the infected BMSCs were transplanted into rats suffering from semi-sectioned SCI.The results showed that the over-expression of Nice4 significantly promoted the proliferation and differentiation of BMSCs. In addition,the transplantation of infected BMSCs into the injured area of SCI rats improved the function repair of SCI.Importantly,the immunohistochemical and hematoxylin-eosin staining and RT-PCR results showed that the number of neuronal cells,oligodendrocytes,and astrocytes was significantly increased in the injured area,along with significantly upregulated expression ofcyclin D1 and p38 mitogen-activated protein kinase (MAPK).Meanwhile,the expression of caspase 3 protein was significantly down-regulated.In conclusion,the over-expression of Nice4 gene can promote the functional recovery in SCI rats by promoting cell proliferation and inhibiting apoptosis. The results of this study indicate an alternative option for the clinical treatment of SCI. 展开更多
关键词 bone marrow MESENCHYMAL stem cells spinal CORD injury ubiquitin-associated protein 2-like apoptosis proliferation
下载PDF
Granulocyte-macrophage colony-stimulating factor-transfected bone marrow stromal cells for the treatment of ischemic stroke 被引量:2
18
作者 Xingjian Lin Yingdong Zhang +4 位作者 Weiguo Liu Jingde Dong Jie Lu Qing Di Jingping Shi 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第16期1220-1227,共8页
Adult, male, Sprague-Dawley rats were injected with granulocyte-macrophage colony-stimulating factor-transfected bone marrow stromal cells (GM-CSF-BMSCs) into the ischemic boundary zone at 24 hours after onset of mi... Adult, male, Sprague-Dawley rats were injected with granulocyte-macrophage colony-stimulating factor-transfected bone marrow stromal cells (GM-CSF-BMSCs) into the ischemic boundary zone at 24 hours after onset of middle cerebral artery occlusion. Results showed reduced infarct volume, decreased number of apoptotic cells, improved neurological functions, increased angiogenic factor expression, and increased vascular density in the ischemic boundary zone in rats that underwent GM-CSF-BMSCs transplantation compared with the BMSCs group. Experimental findings suggested that GM-CSF-BMSCs could serve as a potential therapeutic strategy for ischemic stroke and are superior to BMSCs alone. 展开更多
关键词 bone marrow stromal cells granulocyte-macrophage colony-stimulating factor gene transfection ischemic stroke TRANSPLANTATION stem cells neural regeneration
下载PDF
Co-transplantation of Schwann cells and bone marrow stromal cells versus single cell transplantation on repairing hemisected spinal cord injury of rats 被引量:2
19
作者 Jifei Zhang Geng Wu +1 位作者 Fusheng Zhao Xiudong Jin 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第11期805-813,共9页
BACKGROUND: Bone marrow stromal cells (BMSCs) or Schwann cells (SCs) transplantation alone can treat spinal cord injury. However, the transplantation either cell-type alone has disadvantages. The co-transplantati... BACKGROUND: Bone marrow stromal cells (BMSCs) or Schwann cells (SCs) transplantation alone can treat spinal cord injury. However, the transplantation either cell-type alone has disadvantages. The co-transplantation of both cells may benefit structural reconstruction and functional recovery of spinal nerves. OBJECTIVE: To verify spinal cord repair and related mechanisms after co-transplantation of BMSCs and SCs in a rat model of hemisected spinal cord injury. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Department of Histology and Embryology, Mudanjiang Medical College from January 2008 to May 2009. MATERIALS: Rabbit anti-S-100, glial fibrillary acidic protein, neuron specific enolase and neurofilament-200 monoclonal antibodies were purchased from Sigma, USA. METHODS: A total of 100 Wistar rats were used in a model of hemisected spinal cord injury. The rats were randomly assigned to vehicle control, SCs transplantation, BMSCs transplantation, and co-transplantation groups; 25 rats per group. At 1 week after modeling, SCs or BMSCs cultured in vitro were labeled and injected separately into the hemisected spinal segment of SCs and BMSCs transplantation groups through three injection points [5 μL (1 x 107 cells/mL)] cell suspension in each point). In addition, a 15 μL 1 × 10^7 cells/mL SCs suspension and a 15 μL 1 × 10^7 cells/mL BMSC suspension were injected into co-transplantation group by the above method. MAIN OUTCOME MEASURES: The Basso-Beattie-Bresnahan (BBB) locomotor rating scale and somatosensory evoked potential (SEP) tests were used to assess the functional recovery of rat hind limbs following operation. Structural repair of injured nerve tissue was observed by light microscopy, electron microscopy, immunohistochemistry, and magnetic resonance imaging (MRI). In vivo differentiation, survival and migration of BMSCs were evaluated by immunofluorescence. RESULTS: BBB scores were significantly greater in all three transplantation groups compared with vehicle control group 8 weeks after transplantation. In particular, the co-transplantation group displayed the highest scores among the groups (P 〈 0.05). Moreover, recovery of SEP latency and amplitude was observed in all the transplantation groups, particularly after 8 weeks. Again, the co-transplantation group exhibited the greatest improvement (P 〈 0.05). In the co-transplantation group, imaging showed a smooth surface and intact inner structure at the injury site, with no scar formation, and a large number of orderly cells at the injured site. Axonal regeneration, new myelination, and a large amount of cell division were detected in the co-transplantation group by electron microscopy. Neuron specific enolase (NSE)- and glial fibriilary acidic protein (GFAP)-positive cells were observed in the spinal cord sections 1 week following co-transplantation by immunofluorescence staining. CONCLUSION: Co-transplantation of SCs and BMSCs effectively promoted functional recovery of injured spinal cord in rats compared with SCs or BMSCs transplantation alone. This repair effect is probably achieved because of neuronal-like cells derived from BMSCs to supplement dead neurons in vivo. 展开更多
关键词 bone marrow stromal cells Schwann cells CO-TRANSPLANTATION spinal cord injury neural regeneration
下载PDF
PURGING OF BONE MARROWS CONTAMINATED WITH MYELOID LEUKEMIC CELLS BY INTERLEUKIN-2 AND LYMPHOKINE-ACTIVATED KILLER CELLS 被引量:2
20
作者 毛宁 《中国实验血液学杂志》 CAS CSCD 1995年第2期204-209,共6页
The capability of recombinant human interleukin-2 ( rhIL-2) and lymphokine-activated killer (LAK) cells in the purging of normal human bone marrows contaminated with human myeloid leukemic cell lines was evaluated. Mi... The capability of recombinant human interleukin-2 ( rhIL-2) and lymphokine-activated killer (LAK) cells in the purging of normal human bone marrows contaminated with human myeloid leukemic cell lines was evaluated. Mixtures of normal human bone marrow mononuclear cells ( BMC) and K562 cells or HL-60 cells (at the BMCK562 ratio of 200:1, 100:1 or 20:1) were incubated with IL-2 with or without LAK cells at the BMC:LAK ratio of 1:1 for one or three days. The nubmers of residual K562 cells, BFU-E and CFU-GM were examined by clonogenic assays. In 200:1 mixture groups without LAK cells, the number of K562 colonies reduced by 50% with no loss of BFU-E and CFU-GM in one-day cultures, and no K562 colonies formed in three-day cultures with about 20% loss of BFU-E and CFU-GM. If the BMC.K562 ratios were 100:1 or 20:1 in the mktures, the leukemic cells could not be eliminated. When the mixtures were incubated with IL-2 and LAK cells, no leukemic cell colonies were detected in the 20:1 group following one-day 展开更多
关键词 INTERLEUKIN-2 lymphokine-activated KILLER cell PURGING of bone marrow cells K562 cell HL-60 cell
下载PDF
上一页 1 2 115 下一页 到第
使用帮助 返回顶部