Several crucial stromal cell populations regulate hematopoiesis and malignant diseases in bone marrow niches.Precise regulation of these cell types can remodel niches and develop new therapeutics.Multiple nanocarriers...Several crucial stromal cell populations regulate hematopoiesis and malignant diseases in bone marrow niches.Precise regulation of these cell types can remodel niches and develop new therapeutics.Multiple nanocarriers have been developed to transport drugs into the bone marrow selectively.However,the delivery efficiency of these nanotherapeutics into crucial niche cells is still unknown,and there is no method available for predicting delivery efficiency in these cell types.Here,we constructed a three-dimensional bone marrow niche composed of three crucial cell populations:endothelial cells(ECs),mesenchymal stromal cells(MSCs),and osteoblasts(OBs).Mimetic niches were used to detect the cellular uptake of three typical drug nanocarriers into ECs/MSCs/OBs in vitro.Less than 5%of nanocarriers were taken up by three stromal cell types,and most of themwere located in the extracellular matrix.Delivery efficiency in sinusoidal ECs,arteriole ECs,MSCs,and OBs in vivo was analyzed.The correlation analysis showed that the cellular uptake of three nanocarriers in crucial cell types in vitro is positively linear correlated with its delivery efficiency in vivo.The delivery efficiency into MSCs was remarkably higher than that into ECs and OBs,no matterwhat kind of nanocarrier.The overall efficiency into sinusoidal ECswas greatly lower than that into arteriole ECs.All nanocarriers were hard to be delivered into OBs(<1%).Our findings revealed that cell tropisms of nanocarriers with different compositions and ligand attachments in vivo could be predicted via detecting their cellular uptake in bone marrow niches in vitro.This study provided the methodology for niche-directed nanotherapeutics development.展开更多
Bone metastasis secondary to breast cancer negatively impacts patient quality of life and survival.The treatment of bone metastases is challenging since many anticancer drugs are not effectively delivered to the bone ...Bone metastasis secondary to breast cancer negatively impacts patient quality of life and survival.The treatment of bone metastases is challenging since many anticancer drugs are not effectively delivered to the bone to exert a therapeutic effect.To improve the treatment efficacy,we developed Pluronic P123(P123)-based polymeric micelles dually decorated with alendronate(ALN)and cancer-specific phage protein DMPGTVLP(DP-8)for targeted drug delivery to breast cancer bone metastases.Doxorubicin(DOX)was selected as the anticancer drug and was encapsulated into the hydrophobic core of the micelles with a high drug loading capacity(3.44%).The DOX-loaded polymeric micelles were spherical,123 nm in diameter on average,and exhibited a narrow size distribution.The in vitro experiments demonstrated that a pH decrease from 7.4 to 5.0 markedly accelerated DOX release.The micelles were well internalized by cultured breast cancer cells and the cell death rate of micelle-treated breast cancer cells was increased compared to that of free DOX-treated cells.Rapid binding of the micelles to hydroxyapatite(HA)microparticles indicated their high affinity for bone.P123-ALN/DP-8@DOX inhibited tumor growth and reduced bone resorption in a 3D cancer bone metastasis model.In vivo experiments using a breast cancer bone metastasis nude model demonstrated increased accumulation of the micelles in the tumor region and considerable antitumor activity with no organ-specific histological damage and minimal systemic toxicity.In conclusion,our study provided strong evidence that these pH-sensitive dual ligand-targeted polymeric micelles may be a successful treatment strategy for breast cancer bone metastasis.展开更多
The vicious cycle between tumor cell proliferation and bone resorption remarkably elevates the progression and metastasis of bone tumors.Here,we fabricated polyethylene glycol-conjugated alendronate-functionalized and...The vicious cycle between tumor cell proliferation and bone resorption remarkably elevates the progression and metastasis of bone tumors.Here,we fabricated polyethylene glycol-conjugated alendronate-functionalized and chloroquine(CQ)-loaded polydopamine nanoparticles(PPA/CQ)for efficient treatment of bone tumors via breaking the vicious cycle.The nanoparticles were efficiently accumulated to the bone tissues,especially the osteolytic lesions around tumors.CQ released from PPA/CQ inhibited osteoclastogenesis via preventing the degradation of tumor necrosis factor(TNF)receptor-associated receptor 3 to attenuate the osteolysis in bone tumors.On the other hand,CQ blocked the autophagy in cancer cells,resulting in improved photothermal killing of cancer cells.Finally,the in vivo experiment revealed that PPA/CQ-associated treatment efficiently inhibited both tumor growth and osteolysis.This work suggests that autophagy inhibition-associated photothermal therapy could be a promising strategy for treating malignant bone tumors.展开更多
基金support from the National Natural Science Foundation of China(81703713,82174095,82274364)Natural Science Foundation of Zhejiang Province grants(LZ23H290001,LZ22H290001)internal support from Zhejiang Chinese Medical University(2022GJYY011).
文摘Several crucial stromal cell populations regulate hematopoiesis and malignant diseases in bone marrow niches.Precise regulation of these cell types can remodel niches and develop new therapeutics.Multiple nanocarriers have been developed to transport drugs into the bone marrow selectively.However,the delivery efficiency of these nanotherapeutics into crucial niche cells is still unknown,and there is no method available for predicting delivery efficiency in these cell types.Here,we constructed a three-dimensional bone marrow niche composed of three crucial cell populations:endothelial cells(ECs),mesenchymal stromal cells(MSCs),and osteoblasts(OBs).Mimetic niches were used to detect the cellular uptake of three typical drug nanocarriers into ECs/MSCs/OBs in vitro.Less than 5%of nanocarriers were taken up by three stromal cell types,and most of themwere located in the extracellular matrix.Delivery efficiency in sinusoidal ECs,arteriole ECs,MSCs,and OBs in vivo was analyzed.The correlation analysis showed that the cellular uptake of three nanocarriers in crucial cell types in vitro is positively linear correlated with its delivery efficiency in vivo.The delivery efficiency into MSCs was remarkably higher than that into ECs and OBs,no matterwhat kind of nanocarrier.The overall efficiency into sinusoidal ECswas greatly lower than that into arteriole ECs.All nanocarriers were hard to be delivered into OBs(<1%).Our findings revealed that cell tropisms of nanocarriers with different compositions and ligand attachments in vivo could be predicted via detecting their cellular uptake in bone marrow niches in vitro.This study provided the methodology for niche-directed nanotherapeutics development.
基金supported by the National Natural Science Foundation of China(#81872220 and#81703437)Xinjiang Uygur Autonomous Region Science and Technology Support Project(#2020E0290)+4 种基金Basic Public Welfare Research Project of Zhejiang Province(#LGF18H160034,LGC21B050011 and#LGF20H300012),Science and Technology Bureau of Jiaxing(2020AY10021)Key Research and Development and Transformation project of Qinghai Province(2021-SF-C20)Dutch Cancer Foundation(KWF project#10666)a Zhejiang Provincial Foreign Expert Program Grant,Zhejiang Provincial Key Natural Science Foundation of China(#Z20H160031)and Jiaxing Key Laboratory of Oncological Photodynamic Therapy and Targeted Drug Research,and“Innovative Jiaxing·Excellent Talent Support Program”-Top Talents in Technological Innovation.
文摘Bone metastasis secondary to breast cancer negatively impacts patient quality of life and survival.The treatment of bone metastases is challenging since many anticancer drugs are not effectively delivered to the bone to exert a therapeutic effect.To improve the treatment efficacy,we developed Pluronic P123(P123)-based polymeric micelles dually decorated with alendronate(ALN)and cancer-specific phage protein DMPGTVLP(DP-8)for targeted drug delivery to breast cancer bone metastases.Doxorubicin(DOX)was selected as the anticancer drug and was encapsulated into the hydrophobic core of the micelles with a high drug loading capacity(3.44%).The DOX-loaded polymeric micelles were spherical,123 nm in diameter on average,and exhibited a narrow size distribution.The in vitro experiments demonstrated that a pH decrease from 7.4 to 5.0 markedly accelerated DOX release.The micelles were well internalized by cultured breast cancer cells and the cell death rate of micelle-treated breast cancer cells was increased compared to that of free DOX-treated cells.Rapid binding of the micelles to hydroxyapatite(HA)microparticles indicated their high affinity for bone.P123-ALN/DP-8@DOX inhibited tumor growth and reduced bone resorption in a 3D cancer bone metastasis model.In vivo experiments using a breast cancer bone metastasis nude model demonstrated increased accumulation of the micelles in the tumor region and considerable antitumor activity with no organ-specific histological damage and minimal systemic toxicity.In conclusion,our study provided strong evidence that these pH-sensitive dual ligand-targeted polymeric micelles may be a successful treatment strategy for breast cancer bone metastasis.
基金the National Natural Science Foundation of China(21725402,31871010,81971735,81871470 and 81901867)Shanghai Municipal Science and Technology Commission(17XD1401600)+1 种基金the Fok Ying Tong Education Foundation(151036)Guangdong Innovative and Entrepreneurial Research Team Program(2016ZT06C322)。
文摘The vicious cycle between tumor cell proliferation and bone resorption remarkably elevates the progression and metastasis of bone tumors.Here,we fabricated polyethylene glycol-conjugated alendronate-functionalized and chloroquine(CQ)-loaded polydopamine nanoparticles(PPA/CQ)for efficient treatment of bone tumors via breaking the vicious cycle.The nanoparticles were efficiently accumulated to the bone tissues,especially the osteolytic lesions around tumors.CQ released from PPA/CQ inhibited osteoclastogenesis via preventing the degradation of tumor necrosis factor(TNF)receptor-associated receptor 3 to attenuate the osteolysis in bone tumors.On the other hand,CQ blocked the autophagy in cancer cells,resulting in improved photothermal killing of cancer cells.Finally,the in vivo experiment revealed that PPA/CQ-associated treatment efficiently inhibited both tumor growth and osteolysis.This work suggests that autophagy inhibition-associated photothermal therapy could be a promising strategy for treating malignant bone tumors.
文摘骨骼是除肝脏和肺脏外恶性肿瘤最常见的转移部位.骨转移(bone metastasis)被认为是临床严重的并发症之一.有文献显示超过70%的各类癌症晚期患者会发生骨转移,骨转移会诱发骨痛、病理性骨折、脊髓压迫和高钙血症等,因其导致的死亡率和致残率分别为20%和45%.在保证治疗原发肿瘤的基础上,怎样最大限度的治疗骨转移瘤和诱发最小的副作用是目前医学界研究的热点.靶向给药体系(targeted drug delivery system)包括双磷酸盐类、四环素类、单克隆抗体、聚乙烯亚胺等,它能有效的抑制骨转移,旨在为治疗骨转移提供更有效的策略.