期刊文献+
共找到160篇文章
< 1 2 8 >
每页显示 20 50 100
O-linkedβ-N-acetylglucosaminylation may be a key regulatory factor in promoting osteogenic differentiation of bone marrow mesenchymal stromal cells
1
作者 Xu-Chang Zhou Guo-Xin Ni 《World Journal of Stem Cells》 SCIE 2024年第3期228-231,共4页
Cumulative evidence suggests that O-linkedβ-N-acetylglucosaminylation(OGlcNAcylation)plays an important regulatory role in pathophysiological processes.Although the regulatory mechanisms of O-GlcNAcylation in tumors ... Cumulative evidence suggests that O-linkedβ-N-acetylglucosaminylation(OGlcNAcylation)plays an important regulatory role in pathophysiological processes.Although the regulatory mechanisms of O-GlcNAcylation in tumors have been gradually elucidated,the potential mechanisms of O-GlcNAcylation in bone metabolism,particularly,in the osteogenic differentiation of bone marrow mesenchymal stromal cells(BMSCs)remains unexplored.In this study,the literature related to O-GlcNAcylation and BMSC osteogenic differentiation was reviewed,assuming that it could trigger more scholars to focus on research related to OGlcNAcylation and bone metabolism and provide insights into the development of novel therapeutic targets for bone metabolism disorders such as osteoporosis. 展开更多
关键词 O-GLCNACYLATION Osteogenic differentiation bone marrow mesenchymal stromal cells OSTEOPOROSIS
下载PDF
The immunomodulatory effects of bone marrow-derived mesenchymal stem cells on lymphocyte in spleens of aging rats
2
作者 Zhi-Hong Wang Zhi-Feng Lin +5 位作者 Yi-Ting Lai Ling-Ling Ding Huai-Cheng Wang Xing Chen Xiao-Ye Chen Hua-Ke Zeng 《Biomedical Engineering Communications》 2023年第3期1-6,共6页
Objective:To investigate the effects of bone marrow-derived mesenchymal stem cells(BMSCs)on the proliferation and secretion of IgM,IgG and IL-2 in spleen lymphocytes(L)of aging rats.Methods:BMSCs were isolated by the ... Objective:To investigate the effects of bone marrow-derived mesenchymal stem cells(BMSCs)on the proliferation and secretion of IgM,IgG and IL-2 in spleen lymphocytes(L)of aging rats.Methods:BMSCs were isolated by the whole bone marrow adherence method and characterized.A rat model of aging was produced by daily subcutaneous injection of D-galactose into the back of the neck.Rat spleen lymphocyte isolate kit to isolate spleen lymphocytes from aging rats and young rats.In vitro,the co-culture system of BMSCs and aging rats lymphocytes was established,and under the induction of mitogen LPS and ConA,the proliferative activity of lymphocytes in each group was detected by CCK-8 assay,the levels of IgM and IgG in the culture supernatant of each group was detected by ELISA,and the IL-2 radioimmunoassay kits were used to detect the content of IL-2 in the supernatant of each group.Results:(1)The isolated adherent cells showed the characteristics of BMSCs,including spindle-shaped morphology,high expression of CD29,CD44,low expression of CD34 and CD45,and osteogenic/adipogenic ability.(2)Under LPS induction,lymphocyte proliferative activity and secretion of immunoglobulin IgG were reduced in the aging group compared with the young group,and co-culture with BMSCs reversed this trend.(3)Under ConA induction,the IL-2 content of BMSCs co-cultured with aging lymphocytes was higher than that of aging lymphocytes alone(P<0.0001);the IL-2 content of CsA co-cultured with aging lymphocytes was lower than that of aging lymphocytes alone(P<0.0001).Conclusion:BMSCs have immunomodulatory effects on the spleen lymphocytes of aging rats in vitro. 展开更多
关键词 bone marrow-derived mesenchymal stem cell IMMUNOSENESCENCE LYMPHOCYTE IMMUNOMODULATION
下载PDF
Is mandible derived mesenchymal stromal cells superior in proliferation and regeneration to long bone-derived mesenchymal stromal cells? 被引量:1
3
作者 Madhan Jeyaraman Tushar Verma +3 位作者 Naveen Jeyaraman Bishnu Prasad Patro Arulkumar Nallakumarasamy Manish Khanna 《World Journal of Methodology》 2023年第2期10-17,共8页
Mesenchymal stromal cells(MSCs)are cells with the characteristic ability of self-renewal along with the ability to exhibit multilineage differentiation.Bone marrow(BM)is the first tissue in which MSCs were identified ... Mesenchymal stromal cells(MSCs)are cells with the characteristic ability of self-renewal along with the ability to exhibit multilineage differentiation.Bone marrow(BM)is the first tissue in which MSCs were identified and BM-MSCs are most commonly used among various MSCs in clinical settings.MSCs can stimulate and promote osseous regeneration.Due to the difference in the development of long bones and craniofacial bones,the mandibular-derived MSCs(M-MSCs)have distinct differentiation characteristics as compared to that of long bones.Both mandibular and long bone-derived MSCs are positive for MSC-associated markers such as CD-73,-105,and-106,stage-specific embryonic antigen 4 and Octamer-4,and negative for hematopoietic markers such as CD-14. 展开更多
关键词 MANDIBLE Long bone mesenchymal stromal cells Osteogenic potential REGENERATION
下载PDF
Senescent mesenchymal stem/stromal cells in pre-metastatic bone marrow of untreated advanced breast cancer patients
4
作者 FRANCISCO RAÚL BORZONE MARÍA BELÉN GIORELLO +6 位作者 LEANDRO MARCELO MARTINEZ MARÍA CECILIA SANMARTIN LEONARDO FELDMAN FEDERICO DIMASE EMILIO BATAGELJ GUSTAVO YANNARELLI NORMA ALEJANDRA CHASSEING 《Oncology Research》 SCIE 2023年第3期361-374,共14页
Breast cancer is the predominant form of carcinoma among women worldwide,with 70%of advanced patients developing bone metastases,with a high mortality rate.In this sense,the bone marrow(BM)mesenchymal stem/stromal cel... Breast cancer is the predominant form of carcinoma among women worldwide,with 70%of advanced patients developing bone metastases,with a high mortality rate.In this sense,the bone marrow(BM)mesenchymal stem/stromal cells(MSCs)are critical for BM/bone homeostasis,and failures in their functionality,transform the BM into a premetastatic niche(PMN).We previously found that BM-MSCs from advanced breast cancer patients(BCPs,infiltrative ductal carcinoma,stage III-B)have an abnormal profile.This work aims to study some of the metabolic and molecular mechanisms underlying MSCs shift from a normal to an abnormal profile in this group of patients.A comparative analysis was undertaken,which included self-renewal capacity,morphology,proliferation capacity,cell cycle,reactive oxygen species(ROS)levels,and senescence-associatedβ‑galactosidase(SA‑β‑gal)staining of BMderived MSCs isolated from 14 BCPs and 9 healthy volunteers(HVs).Additionally,the expression and activity of the telomerase subunit TERT,as well as telomere length,were measured.Expression levels of pluripotency,osteogenic,and osteoclastogenic genes(OCT-4,SOX-2,M-CAM,RUNX-2,BMP-2,CCL-2,M-CSF,and IL-6)were also determined.The results showed that MSCs from BCPs had reduced,self-renewal and proliferation capacity.These cells also exhibited inhibited cell cycle progression and phenotypic changes,such as an enlarged and flattened appearance.Additionally,there was an increase in ROS and senescence levels and a decrease in the functional capacity of TERT to preserve telomere length.We also found an increase in pro-inflammatory/pro-osteoclastogenic gene expression and a decrease in pluripotency gene expression.We conclude that these changes could be responsible for the abnormal functional profile that MSCs show in this group of patients. 展开更多
关键词 mesenchymal stem/stromal cells Senescence Breast cancer bone marrow Pre-metastatic niche bone metastasis
下载PDF
Constitutive aryl hydrocarbon receptor facilitates the regenerative potential of mouse bone marrow mesenchymal stromal cells
5
作者 Jing Huang Yi-Ning Wang Yi Zhou 《World Journal of Stem Cells》 SCIE 2023年第8期807-820,共14页
BACKGROUND Bone marrow mesenchymal stromal cells(BMSCs)are the commonly used seed cells in tissue engineering.Aryl hydrocarbon receptor(AhR)is a transcription factor involved in various cellular processes.However,the ... BACKGROUND Bone marrow mesenchymal stromal cells(BMSCs)are the commonly used seed cells in tissue engineering.Aryl hydrocarbon receptor(AhR)is a transcription factor involved in various cellular processes.However,the function of constitutive AhR in BMSCs remains unclear.AIM To investigate the role of AhR in the osteogenic and macrophage-modulating potential of mouse BMSCs(mBMSCs)and the underlying mechanism.METHODS Immunochemistry and immunofluorescent staining were used to observe the expression of AhR in mouse bone marrow tissue and mBMSCs.The overexpression or knockdown of AhR was achieved by lentivirus-mediated plasmid.The osteogenic potential was observed by alkaline phosphatase and alizarin red staining.The mRNA and protein levels of osteogenic markers were detected by quantitative polymerase chain reaction(qPCR)and western blot.After coculture with different mBMSCs,the cluster of differentiation(CD)86 and CD206 expressions levels in RAW 264.7 cells were analyzed by flow cytometry.To explore the underlying molecular mechanism,the interaction of AhR with signal transducer and activator of transcription 3(STAT3)was observed by co-immunoprecipitation and phosphorylation of STAT3 was detected by western blot.RESULTS AhR expressions in mouse bone marrow tissue and isolated mBMSCs were detected.AhR overexpression enhanced the osteogenic potential of mBMSCs while AhR knockdown suppressed it.The ratio of CD86+RAW 264.7 cells cocultured with AhR-overexpressed mBMSCs was reduced and that of CD206+cells was increased.AhR directly interacted with STAT3.AhR overexpression increased the phosphorylation of STAT3.After inhibition of STAT3 via stattic,the promotive effects of AhR overexpression on the osteogenic differentiation and macrophage-modulating were partially counteracted.CONCLUSION AhR plays a beneficial role in the regenerative potential of mBMSCs partially by increasing phosphorylation of STAT3. 展开更多
关键词 Aryl hydrocarbon receptor bone marrow mesenchymal stromal cells OSTEOGENESIS MACROPHAGE Signal transducer and activator of transcription 3 Interaction
下载PDF
Human bone marrow-derived mesenchymal stem cells transplanted into damaged rabbit heart to improve heart function 被引量:26
6
作者 王建安 樊友启 +3 位作者 李长岭 何红 孙勇 吕炳建 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第4期242-248,共7页
Objective: The present study was designed to test whether transplantation of human bone marrow-derived mesen- chymal stem cells (hMSCs) in New Zealand rabbits with myocardial infarction can improve heart function; and... Objective: The present study was designed to test whether transplantation of human bone marrow-derived mesen- chymal stem cells (hMSCs) in New Zealand rabbits with myocardial infarction can improve heart function; and whether engrafted donor cells can survive and transdifferentiated into cardiomyocytes. Methods: Twenty milliliters bone marrow was obtained from healthy men by bone biopsy. A gradient centrifugation method was used to separate bone marrow cells (BMCs) and red blood cells. BMCs were incubated for 48 h and then washed with phosphate-buffered saline (PBS). The culture medium was changed twice a week for 28 d. Finally, hematopoietic cells were washed away to leave only MSCs. Human MSCs (hMSCs) were premarked by BrdU 72 h before the transplantation. Thirty-four New Zealand rabbits were randomly divided into myocardial infarction (MI) control group and cell treated group, which received hMSCs (MI+MSCs) through intramyocardial injection, while the control group received the same volume of PBS. Myocardial infarction was induced by ligation of the left coronary artery. Cell treated rabbits were treated with 5×106 MSCs transplanted into the infarcted region after ligation of the coronary artery for 1 h, and the control group received the same volume of PBS. Cyclosporin A (oral solution; 10 mg/kg) was provided alone, 24 h before surgery and once a day after MI for 4 weeks. Echocardiography was measured in each group before the surgery and 4 weeks after the surgery to test heart function change. The hearts were harvested for HE staining and immunohistochemical studies after MI and cell transplantation for 4 weeks. Results: Our data showed that cardiac function was significantly improved by hMSC transplan- tation in rabbit infarcted hearts 4 weeks after MI (ejection fraction: 0.695±0.038 in the cell treated group (n=12) versus 0.554±0.065 in the control group (n=13) (P<0.05). Surviving hMSCs were identified by BrdU positive spots in infarcted region and transdifferentiated into cardiomyocytes characterized with a positive cardiac phenotype: troponin I. Conclusion: Transplan- tation of hMSCs could transdifferentiate into cardiomyocytes and regenerate vascular structures, contributing to functional im- provement. 展开更多
关键词 bone marrow-derived mesenchymal stem cells TRANSPLANTATION Myocardial infarction (MI)
下载PDF
Bone marrow-derived mesenchymal stem cells ameliorate sodium nitrite-induced hypoxic brain injury in a rat model 被引量:10
7
作者 Elham H.A.Ali Omar A.Ahmed-Farid Amany A.E.Osman 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第12期1990-1999,共10页
Sodium nitrite(Na NO2) is an inorganic salt used broadly in chemical industry. Na NO2 is highly reactive with hemoglobin causing hypoxia. Mesenchymal stem cells(MSCs) are capable of differentiating into a variety ... Sodium nitrite(Na NO2) is an inorganic salt used broadly in chemical industry. Na NO2 is highly reactive with hemoglobin causing hypoxia. Mesenchymal stem cells(MSCs) are capable of differentiating into a variety of tissue specific cells and MSC therapy is a potential method for improving brain functions. This work aims to investigate the possible therapeutic role of bone marrow-derived MSCs against Na NO2 induced hypoxic brain injury. Rats were divided into control group(treated for 3 or 6 weeks), hypoxic(HP) group(subcutaneous injection of 35 mg/kg Na NO2 for 3 weeks to induce hypoxic brain injury), HP recovery groups N-2 w R and N-3 w R(treated with the same dose of Na NO2 for 2 and 3 weeks respectively, followed by 4-week or 3-week self-recovery respectively), and MSCs treated groups N-2 w SC and N-3 w SC(treated with the same dose of Na NO2 for 2 and 3 weeks respectively, followed by one injection of 2 × 106 MSCs via the tail vein in combination with 4 week self-recovery or intravenous injection of Na NO2 for 1 week in combination with 3 week self-recovery). The levels of neurotransmitters(norepinephrine, dopamine, serotonin), energy substances(adenosine monophosphate, adenosine diphosphate, adenosine triphosphate), and oxidative stress markers(malondialdehyde, nitric oxide, 8-hydroxy-2′-deoxyguanosine, glutathione reduced form, and oxidized glutathione) in the frontal cortex and midbrain were measured using high performance liquid chromatography. At the same time, hematoxylin-eosin staining was performed to observe the pathological change of the injured brain tissue. Compared with HP group, pathological change of brain tissue was milder, the levels of malondialdehyde, nitric oxide, oxidized glutathione, 8-hydroxy-2′-deoxyguanosine, norepinephrine, serotonin, glutathione reduced form, and adenosine triphosphate in the frontal cortex and midbrain were significantly decreased, and glutathione reduced form/oxidized glutathione and adenosine monophosphate/adenosine triphosphate ratio were significantly increased in the MSCs treated groups. These findings suggest that bone marrow-derived MSCs exhibit neuroprotective effects against Na NO2-induced hypoxic brain injury through exerting anti-oxidative effects and providing energy to the brain. 展开更多
关键词 nerve regeneration HYPOXIA bone marrow-derived mesenchymal stem cells sodium nitrite monoamine neurotransmitter cell energy neural regeneration
下载PDF
The active principle region of Buyang Huanwu decoction induced differentiation of bone marrow-derived mesenchymal stem cells into neural-like cells Superior effects over original formula of Buyang Huanwu decoction 被引量:9
8
作者 Jinghui Zheng Yi Wan +4 位作者 Jianhuai Chi Dekai Shen Tingting Wu Weimin Li Pengcheng Du 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第4期261-267,共7页
The present study induced in vitro-cultured passage 4 bone marrow-derived mesenchymal stem cells to differentiate into neural-like cells with a mixture of alkaloid, polysaccharide, aglycone, glycoside, essential oils,... The present study induced in vitro-cultured passage 4 bone marrow-derived mesenchymal stem cells to differentiate into neural-like cells with a mixture of alkaloid, polysaccharide, aglycone, glycoside, essential oils, and effective components of Buyang Huanwu decoction (active principle region of decoction for invigorating yang for recuperation). After 28 days, nestin and neuron-specific enolase were expressed in the cytoplasm. Reverse transcription-PCR and western blot analyses showed that nestin and neuron-specific enolase mRNA and protein expression was greater in the active principle region group compared with the original formula group. Results demonstrated that the active principle region of Buyang Huanwu decoction induced greater differentiation of rat bone marrow-derived mesenchymal stem cells into neural-like cells in vitro than the original Buyang Huanwu decoction formula. 展开更多
关键词 active principle region bone marrow-derived mesenchymal stem cells Buyang Huanwu decoction differentiation nerve cells
下载PDF
MicroRNA changes of bone marrow-derived mesenchymal stem cells differentiated into neuronal-like cells by Schwann cell-conditioned medium 被引量:11
9
作者 Zhi-Jian Wei Bao-You Fan +9 位作者 Yang Liu Han Ding Hao-Shuai Tang Da-Yu Pan Jia-Xiao Shi Peng-Yuan Zheng Hong-Yu Shi Heng Wu Ang Li Shi-Qing Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第8期1462-1469,共8页
Bone marrow-derived mesenchymal stem cells differentiate into neurons under the induction of Schwann cells. However, key microRNAs and related pathways for differentiation remain unclear. This study screened and ident... Bone marrow-derived mesenchymal stem cells differentiate into neurons under the induction of Schwann cells. However, key microRNAs and related pathways for differentiation remain unclear. This study screened and identified differentially expressed microRNAs in bone marrow- derived mesenchymal stem cells induced by Schwann cell-conditioned medium, and explored targets and related pathways involved in their differentiation into neuronal-like cells. Primary bone marrow-derived mesenchymal stem cells were isolated from femoral and tibial bones, while primary Schwann cells were isolated from bilateral saphenous nerves. Bone marrow-derived mesenchymal stem cells were cultured in unconditioned (control group) and Schwann cell-conditioned medium (bone marrow-derived mesenchymal stem cell + Schwann cell group). Neuronal differentiation of bone marrow-derived mesenchymal stem cells induced by Schwann cell-conditioned medium was observed by time-lapse imaging. Upon induction, the morphology of bone marrow-derived mesencaymal stem cells changed into a neural shape with neurites. Results of quantitative reverse transcription-polymerase chain reaction revealed that nestin mRNA expression was upregulated from 1 to 3 days and downregulated from 3 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. Compared with the control group, microtubule-associated protein 2 mRNA expression gradually increased from 1 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. After 7 days of induction, microRNA analysis iden:ified 83 significantly differentially expressed microRNAs between the two groups. Gene Ontology analysis indicated enrichment of microRNA target genes for neuronal projection development, regulation of axonogenesis, and positive regulation of cell proliferation. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that Hippo, Wnt, transforming growth factor-beta, and Hedgehog signaling pathv/ays were potentially associated with neural differentiation of bone marrow-derived mesenchymal stem cells. This study, which carried out successful microRNA analysis of neuronal-like cells differentiated from bone marrow-derived mesenchymal stem cells by Schwann cell induction, revealed key microRNAs and pathways involved in neural differentiation of bone marrow-derived mesenchymal stem cells. All protocols were approved by the Animal Ethics Committee of Institute of Radiation Medicine, Chinese Academy of Medical Sciences on March 12, 2017 (approval number: DWLI-20170311). 展开更多
关键词 nerve REGENERATION microRNA analysis bone marrow-derived mesenchymal stem cells: Schwann cells neuronal-like cells neuronal differentiation Gene Ontology analysis Hippo SIGNALING PATHWAY Wnt SIGNALING PATHWAY transforming growth factor-beta SIGNALING PATHWAY Hedgehog SIGNALING PATHWAY neural REGENERATION
下载PDF
Effects of lateral ventricular transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene on cognition in a rat model of Alzheimer's disease 被引量:8
10
作者 Ping Zhang Gangyong Zhao +1 位作者 Xianjiang Kang Likai Su 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第4期245-250,共6页
In the present study, transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene into the lateral ventricle of a rat model of Alzheimer's disease, resulted in s... In the present study, transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene into the lateral ventricle of a rat model of Alzheimer's disease, resulted in significant attenuation of nerve cell damage in the hippocampal CA1 region. Furthermore, brain-derived neurotrophic factor and tyrosine kinase B mRNA and protein levels were significantly increased, and learning and memory were significantly improved. Results indicate that transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene can significantly improve cognitive function in a rat model of Alzheimer's disease, possibly by increasing the levels of brain-derived neurotrophic factor and tyrosine kinase B in the hippocampus. 展开更多
关键词 Alzheimer's disease bone marrow-derived mesenchymal stem cells brain-derived neurotrophic factor lateral ventricle electrotransfection neural regeneration
下载PDF
Allograftic bone marrow-derived mesenchymal stem cells transplanted into heart infarcted model of rabbit to renovate infarcted heart 被引量:14
11
作者 王建安 李长岭 +2 位作者 樊友启 何红 孙勇 《Journal of Zhejiang University Science》 CSCD 2004年第10期1279-1285,共7页
Objective: To investigate the directed transplantation of allograftic bone marrow-derived mesenchymal stem cells (MSCs) in myocardial infarcted (MI) model rabbits. Materials and Methods: Rabbits were divided into 3 gr... Objective: To investigate the directed transplantation of allograftic bone marrow-derived mesenchymal stem cells (MSCs) in myocardial infarcted (MI) model rabbits. Materials and Methods: Rabbits were divided into 3 groups, heart infarcted model with MSCs transplanted treatment (MSCs group, n=12), heart infarcted model with PBS injection (control group, n=20), sham operation with PBS injection (sham group, n=17). MSCs labelled by BrdUrd were injected into the MI area of the MSCs group. The same volume of PBS was injected into the MI area of the control group and sham group. The mortality, LVIDd, LVIDs and LVEF of the two groups were compared 4 weeks later. Tropomyosin inhibitory component (Tn I) and BrdUrd immunohistochemistry identified the engrafted cells 4 weeks after transplantation. Result: The mortality of the MSCs group was 16.7% (2/12), and remarkably lower than the control group's mortality [35% (7/20) (P<0.05)]. Among the animals that survived for 4 weeks, the LVIDd and LVIDs of the MSCs group after operation were 1.17±0.21 cm and 0.74±0.13 cm, and remarkably lower than those of the model group, which were 1.64±0.14 cm and 1.19±0.12 cm (P<0.05); the LVEF of the MSCs group after operation was 63±6%, and remarkably higher than that of the model group, which was 53±6% (P<0.05). Among the 10 cases of animals that survived for 4 weeks in the MSCs group, in 8 cases (80%), the transplanted cells survived in the non MI, MI region and its periphery, and even farther away; part of them differentiated into cardiomyocytes; in 7 cases (70%), the transplanted cells participated in the formation of blood vessel tissue in the MI region. Conclusion: Transplanted allograftic MSCs can survive and differentiate into cardiomyocytes, form the blood vessels in the MI region. MSCs transplantation could improve the heart function after MI. 展开更多
关键词 bone marrow-derived mesenchymal stem cells TRANSPLANTATION Myocardial infarction
下载PDF
Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury 被引量:4
12
作者 Jindou Jiang Xingyao Bu +1 位作者 Meng Liu Peixun Cheng 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第1期46-53,共8页
Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes a... Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury. 展开更多
关键词 ANGIOGENESIS NEUROGENESIS neurotrophic factors bone marrow-derived mesenchymal stem cells traumatic brain injury stem cell transplantation neural regeneration
下载PDF
Magnet-targeted delivery of bone marrow-derived mesenchymal stem cells improves therapeutic efficacy following hypoxic-ischemic brain injury 被引量:4
13
作者 Chuang Sun Ao-Dan Zhang +2 位作者 Hong-Hai Chen Jie Bian Zheng-Juan Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第11期2324-2329,共6页
hypoxicischemic brain injury;however,the therapeutic efficacy of bone marrow-derived mesenchymal stem cells largely depends on the number of cells that are successfully transferred to the target.Magnet-targeted drug d... hypoxicischemic brain injury;however,the therapeutic efficacy of bone marrow-derived mesenchymal stem cells largely depends on the number of cells that are successfully transferred to the target.Magnet-targeted drug delivery systems can use a specific magnetic field to attract the drug to the target site,increasing the drug concentration.In this study,we found that the double-labeling using superparamagnetic iron oxide nanoparticle and poly-L-lysine(SPIO-PLL)of bone marrow-derived mesenchymal stem cells had no effect on cell survival but decreased cell proliferation 48 hours after labeling.Rat models of hypoxic-ischemic brain injury were established by ligating the left common carotid artery.One day after modeling,intraventricular and caudal vein injections of 1×105 SPIO-PLL-labeled bone marrow-derived mesenchymal stem cells were performed.Twenty-four hours after the intraventricular injection,magnets were fixed to the left side of the rats’heads for 2 hours.Intravoxel incoherent motion magnetic resonance imaging revealed that the perfusion fraction and the diffusion coefficient of rat brain tissue were significantly increased in rats treated with SPIO-PLL-labeled cells through intraventricular injection combined with magnetic guidance,compared with those treated with SPIO-PLL-labeled cells through intraventricular or tail vein injections without magnetic guidance.Hematoxylin-eosin and terminal deoxynucleotidyl transferase dUTP nick-end labeling(TUNEL)staining revealed that in rats treated with SPIO-PLL-labeled cells through intraventricular injection under magnetic guidance,cerebral edema was alleviated,and apoptosis was decreased.These findings suggest that targeted magnetic guidance can be used to improve the therapeutic efficacy of bone marrow-derived mesenchymal stem cell transplantation for hypoxic-ischemic brain injury.This study was approved by the Animal Care and Use Committee of The Second Hospital of Dalian Medical University,China(approval No.2016-060)on March 2,2016. 展开更多
关键词 bone marrow-derived mesenchymal stem cells cell apoptosis diffusion coefficient cell labeling intraventricular injection intravoxel incoherent motion magnetic guidance perfusion fraction superparamagnetic nanoparticles
下载PDF
Cell viability and dopamine secretion of 6-hydroxydopamine-treated PC12 cells co-cultured with bone marrow-derived mesenchymal stem cells 被引量:3
14
作者 Yue Tang Yongchun Cui +6 位作者 Fuliang Luo Xiaopeng Liu Xiaojuan Wang Aili Wu Junwei Zhao Zhong Tian Like Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第14期1101-1105,共5页
In the present study, PC12 cells induced by 6-hydroxydopamine as a model of Parkinson's Disease, were used to investigate the protective effects of bone marrow-derived mesenchymal stem cells bone marrow-derived mesen... In the present study, PC12 cells induced by 6-hydroxydopamine as a model of Parkinson's Disease, were used to investigate the protective effects of bone marrow-derived mesenchymal stem cells bone marrow-derived mesenchymal stem cells against 6-hydroxydopamine-induced neurotoxicity and to verify whether the mechanism of action relates to abnormal a-synuclein accumulation in cells Results showed that co-culture with bone marrow-derived mesenchymal stem cells enhanced PC12 cell viability and dopamine secretion in a cell dose-dependent manner. MitoLight staining was used to confirm that PC12 cells co-cultured with bone marrow-derived mesenchymal stem cells demonstrate reduced levels of cell apoptosis. Immunocytochemistry and western blot analysis found the quantity of α-synuclein accumulation was significantly reduced in PC12 cell and bone marrow-derived mesenchymal stem cell co-cultures. These results indicate that bone marrow-derived mesenchymal stem cells can attenuate 6-hydroxydopamine-induced cytotoxicity by reducing abnormal α-synuclein accumulation in PC12 cells. 展开更多
关键词 bone marrow-derived mesenchymal stem cells Α-SYNUCLEIN 6-HYDROXYDOPAMINE PC12 cells dopamine cell apoptosis NEUROTOXICITY neural regeneration
下载PDF
Neuronal-like differentiation of bone marrow-derived mesenchymal stem cells induced by striatal extracts from a rat model of Parkinson's disease 被引量:3
15
作者 Xiaoling Qin Wang Han Zhigang Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第34期2673-2680,共8页
A rat model of Parkinson's disease was established by 6-hydroxydopamine injection into the medial forebrain bundle. Bone marrow-derived mesenchymal stem cells (BMSCs) were isolated from the femur and tibia, and wer... A rat model of Parkinson's disease was established by 6-hydroxydopamine injection into the medial forebrain bundle. Bone marrow-derived mesenchymal stem cells (BMSCs) were isolated from the femur and tibia, and were co-cultured with 10% and 60% lesioned or intact striatal extracts. The results showed that when exposed to lesioned striatal extracts, BMSCs developed bipolar or multi-polar morphologies, and there was an increase in the percentage of cells that expressed glial fibrillary acidic protein (GFAP), nestin and neuron-specific enolase (NSE). Moreover, the percentage of NSE-positive cells increased with increasing concentrations of lesioned striatal extracts. However, intact striatal extracts only increased the percentage of GFAP-positive cells. The findings suggest that striatal extracts from Parkinson's disease rats induce BMSCs to differentiate into neuronal-like cells in vitro. 展开更多
关键词 bone marrow-derived mesenchymal stem cell Parkinson's disease striatal extract induceddifferentiation nerve cell glial fibrillary acidic protein NESTIN neuron-specific enolase neural stemcell regeneration neural regeneration
下载PDF
Ultra-early treatment of bone marrow-derived mesenchymal stem cells for focal cerebral ischemia/ reperfusion injury 被引量:2
16
作者 Hongjie Fan Weidong Yu +2 位作者 Zongli Wang Qian Wang Zhiyi He 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第17期1296-1302,共7页
The time point at which bone marrow-derived mesenchymal stem cells(BMSCs)can be used in transplantation for the treatment of ischemic brain injury remains unclear.In the present study,BMSCs were transplanted to the ... The time point at which bone marrow-derived mesenchymal stem cells(BMSCs)can be used in transplantation for the treatment of ischemic brain injury remains unclear.In the present study,BMSCs were transplanted to the ischemic site 90 minutes post-ischemia.The results demonstrated that the transplanted BMSCs improved neurological function,reduced infarct volume,increased survivin expression,decreased caspase-3 expression and reduced apoptosis.This suggests that BMSCs transplanted at an ultra-early stage ameliorated brain ischemia by increasing survivin expression,decreasing caspase-3 expression and reducing apoptosis at the ischemia/reperfusion injury site. 展开更多
关键词 bone marrow-derived mesenchymal stem cells cerebral ischemia/reperfusion SURVIVIN CASPASE-3 cell apoptosis brain injury neural regeneration
下载PDF
Distribution and differentiation of bone marrow-derived mesenchymal stem cells in vivo after intraperitoneal and tail vein injection into rats in the recovery phase of stroke: Which path is better? 被引量:2
17
作者 Yan Liu Yingdong Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第13期965-969,共5页
BACKGROUND: Stereotactic injection (striatum or lateral ventricle) and vascular injection ( tail vein or carotid artery) are now often used in cellular therapy for cerebral infarction. Stereotactic injection can ... BACKGROUND: Stereotactic injection (striatum or lateral ventricle) and vascular injection ( tail vein or carotid artery) are now often used in cellular therapy for cerebral infarction. Stereotactic injection can accurately deliver cells to the infarct area, but requires a stereotactic device and causes secondary trauma; vascular injection is easy and better for host neurological deficit recovery, but can cause thrombosis. OBJECTIVE: To compare the therapeutic potential of adult bone marrow-derived mesenchymal stem cells (BMSCs) transplantation by intraperitoneal versus intravenous administration to cerebral ischemic rats. DESIGN, TIME AND SE'B'ING: A randomized controlled animal experiment was performed at the Cell Room and Pathology Laboratory, Brain Hospital Affiliated to Nanjing Medical University from November 2007 to September 2008. MATERIALS: BMSCs were derived from 20 healthy Sprague-Dawley rats aged 4-6 weeks. METHODS: Forty-five adult middle cerebral artery occlusion (MCAO) rats were randomly divided into control, intravenous and intraperitoneal injection groups, with 15 rats in each group. At 21 days after modeling, rats in the control group received 1 mL of 0.01 mol/L phosphate buffered saline via tail vein injection and each experimental rat received 4 x 106 BMSCs labeled by bromodeoxyuridine (BrdU) via intravenous or intraperitoneal injection. MAIN OUTCOME MEASURES: Angiogenin expression and survival of transplanted cells were measured by immunohistochemical staining of brain tissue in infarction hemisphere at 7, 14 or 21 days after BMSC transplantation. Co-expression of BrdU/microtubule-associated protein 2 or BrdU/glial fibrillary acidic protein was observed by double-labeled immunofluorescence of cerebral cortex. Evaluation of nerve function adhesion-removal test was performed on the 14 or 21 days after BMSCs treatment. using the neurological injury severity score and the 1st and 21st day before and after MCAO, and at 3, 7 RESULTS: Angiogenin-positive new vessels were distributed in the bilateral striatum, hippocampus and cerebral cortex of each group of rats at each time point, most markedly in the intravenous injection group. There were significantly more BrdU-positive cells in the intravenous injection group than in the intraperitoneal injection group (P 〈 0.01). Co-expression of BrdU/ microtubule-associated protein 2 or BrdU/glial fibrillary acidic protein were almost only seen in the intravenous group by fluorescence microscopy. After transplantation, BMSCs significantly restored nerve function in rats, particularly in the intravenous injection group. CONCLUSION: BMSCs were able to enter brain tissue via the tail vein or peritoneal injection and improve neurological function by promoting the regeneration of nerves and blood vessels in vivo, more effectively after intravenous than intraperitoneal injection. 展开更多
关键词 bone marrow-derived mesenchymal stem cells brain ischemia functional recovery neural differentiation ANGIOGENESIS neural regeneration
下载PDF
Protective effect of bone marrow-derived mesenchymal stem cells on dopaminergic neurons against 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in rat brain slices
18
作者 Lirong Jin Zhen Hong +1 位作者 Chunjiu Zhong Yang Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第1期31-35,共5页
BACKGROUND: To date, the use of bone marrow-derived mesenchymal stem cells (MSCs) for the treatment of Parkinson’s disease have solely focused on in vivo animal models. Because of the number of influencing factors... BACKGROUND: To date, the use of bone marrow-derived mesenchymal stem cells (MSCs) for the treatment of Parkinson’s disease have solely focused on in vivo animal models. Because of the number of influencing factors, it has been difficult to determine a consistent outcome. OBJECTIVE: To establish an injury model in brain slices of substantia nigra and striatum using 1-methyl-4-phenylpytidinium ion (MPP+), and to investigate the effect of MSCs on dopaminergic neurons following MPP+ induced damage. DESIGN, TIME AND SETTING: An in vitro, randomized, controlled, animal experiment using I mmunohistochemistry was performed at the Laboratory of the Department of Anatomy, Fudan University between January 2004 and December 2006. MATERIALS: Primary MSC cultures were obtained from femurs and tibias of adult Sprague Dawley rats. Organotypic brain slices were isolated from substantia nigra and striatum of 1-day-old Sprague Dawley rat pups. Monoclonal antibodies for tyrosine hydroxylase (TH, 1:5 000) were from Santa Cruz (USA); goat anti-rabbit IgG antibodies labeled with FITC were from Boster Company (China). METHODS: Organotypic brain slices were cultured for 5 days in whole culture medium supplemented with 50% DMEM, 25% equine serum, and 25% Tyrode’s balanced salt solution. The medium was supplemented with 5 μg/mL Ara-C, and the culture was continued for an additional 5 days. The undergrowth of brain slices was discarded at day 10. Eugonic brain slices were cultured with basal media for an additional 7 days. The brain slices were divided into three groups: control, MPP+ exposure, and co-culture. For the MPP+ group, MPP+ (30 μmol/L) was added to the media at day 17 and brain slices were cultured for 4 days, followed by control media. For the co-culture group, the MPP+ injured brain slices were placed over MSCs in the well and were further cultured for 7 days. MAIN OUTCOME MEASURES: After 28 days in culture, neurite outgrowth was examined in the brain slices under phase-contrast microscopy. The percent of area containing dead cells in each brain slice was calculated with the help of propidium iodide fluorescence. Brain slices were stained with antibodies for TH to indicate the presence of dopaminergic neurons. Transmission electron microscopy was applied to determine the effect of MSCs on neuronal ultrastructure. RESULTS: Massive cell death and neurite breakage was observed in the MPP+ group. In addition, TH expression was significantly reduced, compared to the control group (P 〈 0.01). After 7 days in culture with MSCs, the co-culture group presented with less cell damage and reduced neurite breakage, and TH expression was increased. However, these changes were not significantly different from the MPP+ group (P 〈 0.01). Electron microscopy revealed reduced ultrastructural injury to cells in the brain slices. However, vacuoles were present in cells, with some autophagic vacuoles. CONCLUSION: Bone marrow-derived MSCs can promote survival of dopaminergic neurons following MPP+-induced neurotoxicity in co-cultures with substantia nigra and striatum brain slices. 展开更多
关键词 bone marrow-derived mesenchymal stem cells brain slice Parkinson's disease dopaminergic neurons
下载PDF
Living biodrugs and how tissue source influences mesenchymal stem cell therapeutics for heart failure
19
作者 Siddharth Shah Huzaifa Sabir Nawaz +2 位作者 Muhammad Saeed Qazi Hritvik Jain Brandon Lucke-Wold 《World Journal of Cardiology》 2024年第11期619-625,共7页
In this editorial we comment on the article by Safwan M et al.We especially fo-cused on the cardiac function restoration by the use of mesenchymal stem cells(MSCs)therapy for heart failure(HF),which has emerged as a n... In this editorial we comment on the article by Safwan M et al.We especially fo-cused on the cardiac function restoration by the use of mesenchymal stem cells(MSCs)therapy for heart failure(HF),which has emerged as a new treatment approach as“Living Biodrugs”.HF remains a significant clinical challenge due to the heart’s inability to pump blood effectively,despite advancements in medical and device-based therapies.MSCs have emerged as a promising therapeutic approach,offering benefits beyond traditional treatments through their ability to modulate inflammation,reduce fibrosis,and promote endogenous tissue rege-neration.MSCs can be derived from various tissues,including bone marrow and umbilical cord.Umbilical cord-derived MSCs exhibit superior expansion ca-pabilities,making them an attractive option for HF therapy.Conversely,bone marrow-derived MSCs have been extensively studied for their potential to im-prove cardiac function but face challenges related to cell retention and delivery.Future research is focusing on optimizing MSC sources,enhancing differentiation and immune modulation,and improving delivery methods to overcome current limitations. 展开更多
关键词 mesenchymal stem cells Heart failure Umbilical cord-derived mesenchymal stem cells bone marrow-derived mesenchymal stem cells Therapeutics for heart failure Biodrugs Tissue source
下载PDF
In vitro differentiation of adipose-derived stem cells and bone marrow-derived stromal stem cells into neuronal-like cells 被引量:21
20
作者 Jin Zhou Guoping Tian +9 位作者 Jing'e Wang Xuefeng Cong Xingkai Wu Siyang Zhang Li Li Bing Xu Feng Zhu Xuedan Luo Jian Han Fengjie Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第19期1467-1472,共6页
Adipose-derived stem cells and bone marrow-derived stromal stem cells were co-cultured with untreated or Aβ1-40-treated PC12 cells, or grown in supernatant derived from untreated or Aβ1-40-treated PC12 cells. Analys... Adipose-derived stem cells and bone marrow-derived stromal stem cells were co-cultured with untreated or Aβ1-40-treated PC12 cells, or grown in supernatant derived from untreated or Aβ1-40-treated PC12 cells. Analysis by western blot and quantitative real-time PCR showed that protein levels of Nanog, Oct4, and Sox2, and mRNA levels of miR/125a/3p were decreased, while expression of insulin-like growth factor-2 and neuron specific enolase was increased. In comparison the generation of neuron specific enolase-positive cells was most successful when adipose-derived stem cells were co-cultured with Aβ1-40-treated PC12 cells. Our results demonstrate that adipose-derived stem cells and bone marrow-derived stromal stem cells exhibit trends of neuronal-like cell differentiation after co-culture with Aβ1-40-treated PC12 cells. This process may relate to a downregulation of miR-125a-3p mRNA expression and increased levels of insulin-like growth factor-2 expression. 展开更多
关键词 adipose-derived stem cells bone marrow-derived stromal stem cells DIFFERENTIATION NEURON miR-125a-3p neural regeneration
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部