Bone morphogenetic proteins(BMPs)are a family of potent,multifunctional growth factors belonging to transforming growth factor-(TGF-).They are highly conservative in structures.Over 20 members of BMPs with varying fun...Bone morphogenetic proteins(BMPs)are a family of potent,multifunctional growth factors belonging to transforming growth factor-(TGF-).They are highly conservative in structures.Over 20 members of BMPs with varying functions such as embryogenesis,skeletal formation,hematopoiesis and neurogenesis have been identified in human body.BMPs are unique growth factors that can induce the formation of bone tissue individually.BMPs can induce the differentiation of bone marrow mesenchymal stem cells into osteoblastic lineage and promote the proliferation of osteoblasts and chondrocytes.BMPs stimulate the target cells by specific membrane-bound receptors and signal transduced through mothers against decapentaplegic(Smads)and mitogen activated protein kinase(MAPK)pathways.It has been demonstrated that BMP-2,BMP-4,BMP-6,BMP-7,and BMP-9 play an important role in bone formation.This article focuses on the molecular characterization of BMPs family members,mechanism of osteogenesis promotion,related signal pathways of osteogenic function,relationships between structure and osteogenetic activity,and the interactions among family members at bone formation.展开更多
Background Although various systemic and local factors such as abnormal carbohydrate or calcium metabolism, aging, and hormonal disturbances have been suggested as causes of ossification of the posterior longitudinal ...Background Although various systemic and local factors such as abnormal carbohydrate or calcium metabolism, aging, and hormonal disturbances have been suggested as causes of ossification of the posterior longitudinal ligament (OPLL), the etiology of OPLL is not fully understood. The purpose of this study was to investigate whether bone morphogenetic protein (BMP)-2 is a candidate gene to modify the susceptibility of OPLL and the mechanism of signal transduction in ossification. Methods A total of 420 OPLL patients and 506 age- and sex-matched controls were studied. The complete coding sequence of the human BMP-2 gene was analyzed using polymerase chain reaction (PCR) and direct sequencing. All single nucleotide polymorphisms (SNPs) were detected and genotyped. BMP-2 expression vectors containing positive polymorphisms were constructed and transfected into the C3H10T1/2 cells. The expression of BMP-2 and the Smad signal pathway in positive cell clones were detected by Western blotting. The alkaline phosphatase (ALP) activity was determined using quantitative detection kits. Results The frequencies for the 109T〉G and 570A〉T polymorphisms were different between the case and control groups. The "TG" genotype in 109T〉G polymorphism is associated with the occurrence of OPLL, the frequency of the "G" allele is significantly higher in patients with OPLL than in control subjects (P 〈0.001). The "AT" genotype in 570A〉T polymorphism is associated with the occurrence of OPLL, the frequency of the "T" allele is significantly higher in patients with OPLL than in control subjects (P=0.005). Western blotting analysis revealed that the expression of P-Smadl/5/8 protein transfected by wild-type or mutant expression vectors were significantly higher than control groups (P 〈0.05), but there was no statistical difference in each experimental group (P 〉0.05). The expression of Smad4 protein transfected by wild-type or mutant expression vectors was significantly higher than control groups (P 〈0.05). The expression of Smad4 protein transfected by pcDNA3.1-BMP2 (109G) and pcDNA3.1-BMP2 (109G, 570T) was significantly higher than the other experimental groups (P 〈0.05). The increase in ALP activity has been detected in pcDNA3.1-BMP2 (109G) and pcDNA3.1-BMP2 (109G, 570T) transfected cells up to 4 weeks after stable transfection. Activity of ALP was (30.56±0.46) nmol.min^-1.mg^-1 protein and (29.62±0.68) nmol.min^-1.mg^-1 protein, respectively. This was statistically different compared with the other experimental groups (P 〈0.05). Conclusions BMP-2 is the predisposing gene of OPLL. The "TG" genotype in the 109T〉G and the "AT" genotype in the 570A〉T polymorphisms are associated with the occurrence of OPLL. The 109T〉G polymorphism in exon-2 of the BMP-2 gene is positively associated with the level of Smad4 protein expression and the activity of ALP. The Smad mediated sicjnaling pathway plays an important role durincl the Datholoqical process of OPLL induced by SNPs of BMP-2 aene.展开更多
KD (Keshan disease) is an endemic cardiomyopathy occurring only in China. Its pathogenesis is unclear till now. In the study, gene expression profiles of the PBMC (peripheral blood mononuclear cell) derived respec...KD (Keshan disease) is an endemic cardiomyopathy occurring only in China. Its pathogenesis is unclear till now. In the study, gene expression profiles of the PBMC (peripheral blood mononuclear cell) derived respectively from KD patients and healthy in KD areas were compared. Total RNA was isolated, amplified, labeled and hybridized to Agilent 4 ~ 44 K Whole Human Genome Oligonucleotide Microarray. Significant canonical pathways were analyzed by IPA (ingenuity pathway analysis) to identify differently expressed genes and pathways involved in the cardiovascular system development and function. Quantitative RT-PCR was applied to further validate our microarray results. Eighty-three up-regulated (ratios 〉 2.0) and nine down-regulated glycosyltransferase genes (ratios 〈 0.5) in PBMC in KD patients were detected by significance analysis of microarrays. Two significant canonical pathways from glycosyltransferase gene expression profiles were screened by IPA. The results of qRT-PCR show that four up-regulated (BMP 1/7/10 and FGF 18) and one down-regulated (BMP2) genes are consistent with those in microarray experiment, confirming the validity of the microarray data. Based on the results of the study, it is suggested that bone morphogenetic proteins and fibroblast growth factors might play an important role in the pathogenesis of KD. This further helps us to understand the pathogenesis of KD, as well as dilated cardiomyopathy.展开更多
Peptides from Pilose antler aqueous extract(PAAE) have been shown to stimulate the proliferation and differentiation of bone marrow mesenchymal stem cells(BMSCs). However, the underlying molecular mechanisms are not w...Peptides from Pilose antler aqueous extract(PAAE) have been shown to stimulate the proliferation and differentiation of bone marrow mesenchymal stem cells(BMSCs). However, the underlying molecular mechanisms are not well understood. Here, PAAE was isolated and purified to explore the molecular mechanisms underlying PAAE’s effects on BMSCs as well as its osteoprotective effects in ovariectomized rats. Our results showed that PAAE promoted proliferation and differentiation of BMSCs to become osteoblasts by enhancing ALP activity and increasing extracellular matrix mineralization. The trabecular microarchitecture of ovariectomized rats was also found to be protected by PAAE. Quantitative reverse transcription-polymerase chain reaction(Quantitative RT-PCR) results suggest that PAAE also increased the expression of osteogenic markers including, alkaline phosphatase(ALP), runt-related transcription factor 2(Runx2), osteocalcin(OCN), bone morphogenetic protein-2(BMP-2), and collagen I(COL-I). Immunoblotting results indicated that PAAE upregulated the levels of BMP-2 and Runx2 and was associated with Smad1/5 phosphorylation. PAAE A at the concentration of 200μg·mL^-1 showed the strongest effect on proliferation and osteogenic differentiation of BMSCs after 48 h. Using matrix-assisted laser desorption/ionization time of flight mass spectrometry(MALDI-TOF MS), we identified the molecular weight of PAAE A and found that it is less than 3000 Da and showed several significant peaks. In conclusion, PAAE activates the BMP-2/Smad1, 5/Runx2 pathway to induce osteoblastic differentiation and mineralization in BMSCs and can inhibit OVX-induced bone loss. These mechanisms are likely responsible for its therapeutic effect on postmenopausal osteoporosis.展开更多
Although various anti-osteoporosis drugs are available,the limitations of these therapies,including drug resistance and collateral responses,require the development of novel anti-osteoporosis agents.Rhizoma Drynariae ...Although various anti-osteoporosis drugs are available,the limitations of these therapies,including drug resistance and collateral responses,require the development of novel anti-osteoporosis agents.Rhizoma Drynariae displays a promising anti-osteoporosis effect,while the effective component and mechanism remain unclear.Here,we revealed the therapeutic potential of Rhizoma Drynariae-derived nanovesicles(RDNVs)for postmenopausal osteoporosis and demonstrated that RDNVs potentiated osteogenic differentiation of human bone marrow mesenchymal stem cells(hBMSCs)by targeting estrogen receptor-alpha(ERα).RDNVs,a natural product isolated from fresh Rhizoma Drynariae root juice by differential ultracentrifugation,exhibited potent bone tissue-targeting activity and anti-osteoporosis efficacy in an ovariectomized mouse model.RDNVs,effectively internalized by hBMSCs,enhanced proliferation and ERαexpression levels of hBMSC,and promoted osteogenic differentiation and bone formation.Mechanistically,via the ERαsignaling pathway,RDNVs facilitated mRNA and protein expression of bone morphogenetic protein 2 and runt-related transcription factor 2 in hBMSCs,which are involved in regulating osteogenic differentiation.Further analysis revealed that naringin,existing in RDNVs,was the active component targeting ERαin the osteogenic effect.Taken together,our study identified that naringin in RDNVs displays exciting bone tissue-targeting activity to reverse osteoporosis by promoting hBMSCs proliferation and osteogenic differentiation through estrogen-like effects.展开更多
基金This work was supported by National Natural Science Foundation Funding(3110131631371805)Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-11-0796)and Heilongjiang Province Postdoctoral Science Foundation.
文摘Bone morphogenetic proteins(BMPs)are a family of potent,multifunctional growth factors belonging to transforming growth factor-(TGF-).They are highly conservative in structures.Over 20 members of BMPs with varying functions such as embryogenesis,skeletal formation,hematopoiesis and neurogenesis have been identified in human body.BMPs are unique growth factors that can induce the formation of bone tissue individually.BMPs can induce the differentiation of bone marrow mesenchymal stem cells into osteoblastic lineage and promote the proliferation of osteoblasts and chondrocytes.BMPs stimulate the target cells by specific membrane-bound receptors and signal transduced through mothers against decapentaplegic(Smads)and mitogen activated protein kinase(MAPK)pathways.It has been demonstrated that BMP-2,BMP-4,BMP-6,BMP-7,and BMP-9 play an important role in bone formation.This article focuses on the molecular characterization of BMPs family members,mechanism of osteogenesis promotion,related signal pathways of osteogenic function,relationships between structure and osteogenetic activity,and the interactions among family members at bone formation.
基金This research was supported by a grant from the National Natural Science Foundation of China (No. 81071486).Acknowledgments: The authors thank the DNA donors for making this study possible.
文摘Background Although various systemic and local factors such as abnormal carbohydrate or calcium metabolism, aging, and hormonal disturbances have been suggested as causes of ossification of the posterior longitudinal ligament (OPLL), the etiology of OPLL is not fully understood. The purpose of this study was to investigate whether bone morphogenetic protein (BMP)-2 is a candidate gene to modify the susceptibility of OPLL and the mechanism of signal transduction in ossification. Methods A total of 420 OPLL patients and 506 age- and sex-matched controls were studied. The complete coding sequence of the human BMP-2 gene was analyzed using polymerase chain reaction (PCR) and direct sequencing. All single nucleotide polymorphisms (SNPs) were detected and genotyped. BMP-2 expression vectors containing positive polymorphisms were constructed and transfected into the C3H10T1/2 cells. The expression of BMP-2 and the Smad signal pathway in positive cell clones were detected by Western blotting. The alkaline phosphatase (ALP) activity was determined using quantitative detection kits. Results The frequencies for the 109T〉G and 570A〉T polymorphisms were different between the case and control groups. The "TG" genotype in 109T〉G polymorphism is associated with the occurrence of OPLL, the frequency of the "G" allele is significantly higher in patients with OPLL than in control subjects (P 〈0.001). The "AT" genotype in 570A〉T polymorphism is associated with the occurrence of OPLL, the frequency of the "T" allele is significantly higher in patients with OPLL than in control subjects (P=0.005). Western blotting analysis revealed that the expression of P-Smadl/5/8 protein transfected by wild-type or mutant expression vectors were significantly higher than control groups (P 〈0.05), but there was no statistical difference in each experimental group (P 〉0.05). The expression of Smad4 protein transfected by wild-type or mutant expression vectors was significantly higher than control groups (P 〈0.05). The expression of Smad4 protein transfected by pcDNA3.1-BMP2 (109G) and pcDNA3.1-BMP2 (109G, 570T) was significantly higher than the other experimental groups (P 〈0.05). The increase in ALP activity has been detected in pcDNA3.1-BMP2 (109G) and pcDNA3.1-BMP2 (109G, 570T) transfected cells up to 4 weeks after stable transfection. Activity of ALP was (30.56±0.46) nmol.min^-1.mg^-1 protein and (29.62±0.68) nmol.min^-1.mg^-1 protein, respectively. This was statistically different compared with the other experimental groups (P 〈0.05). Conclusions BMP-2 is the predisposing gene of OPLL. The "TG" genotype in the 109T〉G and the "AT" genotype in the 570A〉T polymorphisms are associated with the occurrence of OPLL. The 109T〉G polymorphism in exon-2 of the BMP-2 gene is positively associated with the level of Smad4 protein expression and the activity of ALP. The Smad mediated sicjnaling pathway plays an important role durincl the Datholoqical process of OPLL induced by SNPs of BMP-2 aene.
文摘KD (Keshan disease) is an endemic cardiomyopathy occurring only in China. Its pathogenesis is unclear till now. In the study, gene expression profiles of the PBMC (peripheral blood mononuclear cell) derived respectively from KD patients and healthy in KD areas were compared. Total RNA was isolated, amplified, labeled and hybridized to Agilent 4 ~ 44 K Whole Human Genome Oligonucleotide Microarray. Significant canonical pathways were analyzed by IPA (ingenuity pathway analysis) to identify differently expressed genes and pathways involved in the cardiovascular system development and function. Quantitative RT-PCR was applied to further validate our microarray results. Eighty-three up-regulated (ratios 〉 2.0) and nine down-regulated glycosyltransferase genes (ratios 〈 0.5) in PBMC in KD patients were detected by significance analysis of microarrays. Two significant canonical pathways from glycosyltransferase gene expression profiles were screened by IPA. The results of qRT-PCR show that four up-regulated (BMP 1/7/10 and FGF 18) and one down-regulated (BMP2) genes are consistent with those in microarray experiment, confirming the validity of the microarray data. Based on the results of the study, it is suggested that bone morphogenetic proteins and fibroblast growth factors might play an important role in the pathogenesis of KD. This further helps us to understand the pathogenesis of KD, as well as dilated cardiomyopathy.
基金supported by the National Natural Science Foundation of China(No.81473314)
文摘Peptides from Pilose antler aqueous extract(PAAE) have been shown to stimulate the proliferation and differentiation of bone marrow mesenchymal stem cells(BMSCs). However, the underlying molecular mechanisms are not well understood. Here, PAAE was isolated and purified to explore the molecular mechanisms underlying PAAE’s effects on BMSCs as well as its osteoprotective effects in ovariectomized rats. Our results showed that PAAE promoted proliferation and differentiation of BMSCs to become osteoblasts by enhancing ALP activity and increasing extracellular matrix mineralization. The trabecular microarchitecture of ovariectomized rats was also found to be protected by PAAE. Quantitative reverse transcription-polymerase chain reaction(Quantitative RT-PCR) results suggest that PAAE also increased the expression of osteogenic markers including, alkaline phosphatase(ALP), runt-related transcription factor 2(Runx2), osteocalcin(OCN), bone morphogenetic protein-2(BMP-2), and collagen I(COL-I). Immunoblotting results indicated that PAAE upregulated the levels of BMP-2 and Runx2 and was associated with Smad1/5 phosphorylation. PAAE A at the concentration of 200μg·mL^-1 showed the strongest effect on proliferation and osteogenic differentiation of BMSCs after 48 h. Using matrix-assisted laser desorption/ionization time of flight mass spectrometry(MALDI-TOF MS), we identified the molecular weight of PAAE A and found that it is less than 3000 Da and showed several significant peaks. In conclusion, PAAE activates the BMP-2/Smad1, 5/Runx2 pathway to induce osteoblastic differentiation and mineralization in BMSCs and can inhibit OVX-induced bone loss. These mechanisms are likely responsible for its therapeutic effect on postmenopausal osteoporosis.
基金This work was supported by the National Natural Science Foundation of China(Nos.82174119,81973633 and 82274220)Science and Technology Projects in Liwan District,Guangzhou(Nos.20230710 and 202201009,China)+2 种基金Young Talent Support Project of Guangzhou Association for Science and Technology(No.QT2023036,China)Special focus areas for General Universities in Guangdong Province(No.2022ZDZX2016,China)Guangdong Provincial Administration of Traditional Chinese Medicine Project(No.20233025,China).
文摘Although various anti-osteoporosis drugs are available,the limitations of these therapies,including drug resistance and collateral responses,require the development of novel anti-osteoporosis agents.Rhizoma Drynariae displays a promising anti-osteoporosis effect,while the effective component and mechanism remain unclear.Here,we revealed the therapeutic potential of Rhizoma Drynariae-derived nanovesicles(RDNVs)for postmenopausal osteoporosis and demonstrated that RDNVs potentiated osteogenic differentiation of human bone marrow mesenchymal stem cells(hBMSCs)by targeting estrogen receptor-alpha(ERα).RDNVs,a natural product isolated from fresh Rhizoma Drynariae root juice by differential ultracentrifugation,exhibited potent bone tissue-targeting activity and anti-osteoporosis efficacy in an ovariectomized mouse model.RDNVs,effectively internalized by hBMSCs,enhanced proliferation and ERαexpression levels of hBMSC,and promoted osteogenic differentiation and bone formation.Mechanistically,via the ERαsignaling pathway,RDNVs facilitated mRNA and protein expression of bone morphogenetic protein 2 and runt-related transcription factor 2 in hBMSCs,which are involved in regulating osteogenic differentiation.Further analysis revealed that naringin,existing in RDNVs,was the active component targeting ERαin the osteogenic effect.Taken together,our study identified that naringin in RDNVs displays exciting bone tissue-targeting activity to reverse osteoporosis by promoting hBMSCs proliferation and osteogenic differentiation through estrogen-like effects.
文摘目的探索成牙骨质细胞OCCM-30中骨形态发生蛋白2(BMP2)对硬化蛋白(SOST)表达的调控机制。方法用2种质量浓度的BMP2(50、100 ng·mL^(-1))处理成牙骨质OCCM-30细胞3、5、7 d,相同体积的PBS液为对照组,采用实时荧光定量聚合酶链反应(RT-PCR)、免疫印迹法检测SOST m RNA和蛋白的表达情况。将OCCM-30细胞分为5组:空白对照组、BMP2组、BMP2+dorsomorphin组、BMP2+SB202190组、BMP2+PD98059组,根据分组分别加入100 ng·mL^(-1)的BMP2和相应的试剂共培养,于3、5 d时检测SOST m RNA和蛋白的表达情况。结果 100 ng·mL^(-1)BMP2对SOST表达的上调作用强于50 ng·mL^(-1) BMP2,且有时间依赖性(P<0.05)。BMP2+dorsomorphin组、BMP2+SB202190组、BMP2+PD98059组的SOST m RNA水平和蛋白质水平均降低,其中BMP2+dorsomorphin组降低最明显(P<0.05)。结论成牙骨质细胞中BMP2主要是通过Smad信号通路介导上调SOST的表达。