Objective To study the effects of combination of bone morphogenetic protein-2 (BMP-2) and strontium chloride on proliferation and osteogenic differentiation of human umbilical cord mesenchymal stem cells(hUCM-SCs)in v...Objective To study the effects of combination of bone morphogenetic protein-2 (BMP-2) and strontium chloride on proliferation and osteogenic differentiation of human umbilical cord mesenchymal stem cells(hUCM-SCs)in vitro culture.展开更多
To study the cartilage differentiation of mouse mesenchymal stem cells (MSCs) induced by cartilage-derived morphogenetic proteins-2 in vitro, the MSCs were isolated from mouse bone marrow and cultured in vitro. The ...To study the cartilage differentiation of mouse mesenchymal stem cells (MSCs) induced by cartilage-derived morphogenetic proteins-2 in vitro, the MSCs were isolated from mouse bone marrow and cultured in vitro. The cells in passage 3 were induced into chondrogenic differentiation with different concentrations of recombinant human cartilage-derived morphogenetic proteins-2 (0, 10, 20, 50 and 100 ng/mL). After 14 days of induction, morphology of cells was observed under phase-contrast microscope. Collagen Ⅱ mRNA and protein were examined with RT-PCR, Western blotting and immunocytochemistry respectively and the sulfate glycosaminoglycan was measured by Alcian blue staining. RT-PCR showed that CDMP-2 could promote expression of collagen Ⅱ mRNA in an dose-dependant manner, especially at the concentration of 50 ng/mL and 100 ng/mL. Immunocytochemistry and Western blotting revealed a similar change. Alcian blue staining exhibited deposition of typical cartilage extracellular matrix. Our results suggest that mouse bone marrow mesencymal stem cells can differentiate into chondrogenic phonotype with the induction of CDMP-2 in vitro, which provides a basis for further research on the role of CDMP-2 in chondrogenesis.展开更多
Ultrafine-tricalcium phosphate(β-TCP)powders with good crystalline structure were produced by a new process through bone tissue engineering approach rorous β-TCPcermic was combined with recombined human bone morphog...Ultrafine-tricalcium phosphate(β-TCP)powders with good crystalline structure were produced by a new process through bone tissue engineering approach rorous β-TCPcermic was combined with recombined human bone morphogenetic proteins-2(rhBMP-2)to develop a novel composite material ,osteogenesis capacity of the composite was investigated intramuscularly in rat with histological analyses and SEM examination pureβ-TCP porous carmic wsa investigated as the control results show that the compostie materials possess good bilcompatibility biodegradation and strong osteogenesis capacity through inductive process after implantation material degradation began from 2 weeks post-implantation accompanying with the changing o pore structure with the enwrapping and separation fo materials by hyperplatic mesenchymal cells and fibroblast and with the phagocytose reaction of multinucleated giant cells early in 72h immature cartilage could be found within novel composite mature lamellar bone was induced to generate after 3 weeks with strong osteoinduction capacity and controlable bildegradation the novel rhBMP-2\β-TCP porous ceramic is expected to be a promising bone grafting substitute for bone tissue engineering展开更多
文摘Objective To study the effects of combination of bone morphogenetic protein-2 (BMP-2) and strontium chloride on proliferation and osteogenic differentiation of human umbilical cord mesenchymal stem cells(hUCM-SCs)in vitro culture.
基金This project was supported by a grant from the National Natural Sciences Foundation of China (No 30471753)
文摘To study the cartilage differentiation of mouse mesenchymal stem cells (MSCs) induced by cartilage-derived morphogenetic proteins-2 in vitro, the MSCs were isolated from mouse bone marrow and cultured in vitro. The cells in passage 3 were induced into chondrogenic differentiation with different concentrations of recombinant human cartilage-derived morphogenetic proteins-2 (0, 10, 20, 50 and 100 ng/mL). After 14 days of induction, morphology of cells was observed under phase-contrast microscope. Collagen Ⅱ mRNA and protein were examined with RT-PCR, Western blotting and immunocytochemistry respectively and the sulfate glycosaminoglycan was measured by Alcian blue staining. RT-PCR showed that CDMP-2 could promote expression of collagen Ⅱ mRNA in an dose-dependant manner, especially at the concentration of 50 ng/mL and 100 ng/mL. Immunocytochemistry and Western blotting revealed a similar change. Alcian blue staining exhibited deposition of typical cartilage extracellular matrix. Our results suggest that mouse bone marrow mesencymal stem cells can differentiate into chondrogenic phonotype with the induction of CDMP-2 in vitro, which provides a basis for further research on the role of CDMP-2 in chondrogenesis.
基金This study was financially supported by 863 Hi-Tech Research and Development Program of China(2002AA326080)The Fund for Youth Teacher of Education Ministry of China(2002123).
文摘Ultrafine-tricalcium phosphate(β-TCP)powders with good crystalline structure were produced by a new process through bone tissue engineering approach rorous β-TCPcermic was combined with recombined human bone morphogenetic proteins-2(rhBMP-2)to develop a novel composite material ,osteogenesis capacity of the composite was investigated intramuscularly in rat with histological analyses and SEM examination pureβ-TCP porous carmic wsa investigated as the control results show that the compostie materials possess good bilcompatibility biodegradation and strong osteogenesis capacity through inductive process after implantation material degradation began from 2 weeks post-implantation accompanying with the changing o pore structure with the enwrapping and separation fo materials by hyperplatic mesenchymal cells and fibroblast and with the phagocytose reaction of multinucleated giant cells early in 72h immature cartilage could be found within novel composite mature lamellar bone was induced to generate after 3 weeks with strong osteoinduction capacity and controlable bildegradation the novel rhBMP-2\β-TCP porous ceramic is expected to be a promising bone grafting substitute for bone tissue engineering