Piezoelectricity in native bones has been well recognized as the key factor in bone regeneration.Thus,bio-piezoelectric materials have gained substantial attention in repairing damaged bone by mimicking the tissue’s ...Piezoelectricity in native bones has been well recognized as the key factor in bone regeneration.Thus,bio-piezoelectric materials have gained substantial attention in repairing damaged bone by mimicking the tissue’s electrical microenvironment(EM).However,traditional manufacturing strategies still encounter limitations in creating personalized bio-piezoelectric scaffolds,hindering their clinical applications.Three-dimensional(3D)/four-dimensional(4D)printing technology based on the principle of layer-by-layer forming and stacking of discrete materials has demonstrated outstanding advantages in fabricating bio-piezoelectric scaffolds in a more complex-shaped structure.Notably,4D printing functionality-shifting bio-piezoelectric scaffolds can provide a time-dependent programmable tissue EM in response to external stimuli for bone regeneration.In this review,we first summarize the physicochemical properties of commonly used bio-piezoelectric materials(including polymers,ceramics,and their composites)and representative biological findings for bone regeneration.Then,we discuss the latest research advances in the 3D printing of bio-piezoelectric scaffolds in terms of feedstock selection,printing process,induction strategies,and potential applications.Besides,some related challenges such as feedstock scalability,printing resolution,stress-to-polarization conversion efficiency,and non-invasive induction ability after implantation have been put forward.Finally,we highlight the potential of shape/property/functionality-shifting smart 4D bio-piezoelectric scaffolds in bone tissue engineering(BTE).Taken together,this review emphasizes the appealing utility of 3D/4D printed biological piezoelectric scaffolds as next-generation BTE implants.展开更多
背景:股骨头坏死出现新月征是病情进程的“分水岭”,修复和稳定骨-软骨界面对阻止病情继续进展和预防股骨头塌陷尤为重要。利用组织工程学同步修复、整合骨-软骨界面具有潜在优势。目的:综述探讨解决股骨头坏死软骨下分离的潜在适宜技...背景:股骨头坏死出现新月征是病情进程的“分水岭”,修复和稳定骨-软骨界面对阻止病情继续进展和预防股骨头塌陷尤为重要。利用组织工程学同步修复、整合骨-软骨界面具有潜在优势。目的:综述探讨解决股骨头坏死软骨下分离的潜在适宜技术。方法:检索1970年1月至2023年4月PubMed、Web of Science及中国知网、万方数据库中发表的相关文献,英文检索词:“Femoral head necrosis,Avascular necrosis of femoral head,Osteonecrosis of femoral head”等,中文检索词:“股骨头坏死,软骨下骨,软骨,软骨与软骨下骨整合”等,最终纳入114篇文献进行综述分析。结果与结论:①结构缺陷、缺血缺氧环境、炎症因素和应力集中可能造成股骨头坏死软骨下分离现象,软骨下骨分离会造成塌陷进展,并且可能与保髋手术失败相关,利用组织工程支架实现支架与骨-软骨界面的整合是治疗股骨头坏死软骨下分离的潜在方法之一。②目前的文献研究表明,多相、梯度支架和复合材料在促进骨、软骨细胞黏附与增殖,骨软骨基质的沉积方面均有提升,有助于支架与骨-软骨界面的整合,对治疗股骨头坏死软骨下分离有参考价值。③通过对支架表面进行修饰可以提高与界面整合的效率,但有各自不同的优缺点,提供不同环境的支架能够诱导同种间充质干细胞差异分化,有助于不同界面之间的整合。④未来有望应用于股骨头坏死软骨下分离的支架应为复合材料,具有梯度化和差异化的仿生结构,通过表面修饰和干细胞加载促进骨-软骨界面与支架的整合以实现治疗目的,但仍需进一步研究验证,而支架的降解速率与修复进度同步和不同界面之间的稳定性是未来需要解决的主要问题。展开更多
背景:如何修复骨缺损一直以来是临床难题,中药有效成分在骨修复方面具有良好的生物活性与治疗效果,将中药有效成分与组织工程材料相结合在骨修复领域具有广阔的前景。不同中药有效成分与支架的组合在作用关系方面具有相似之处。目的:搜...背景:如何修复骨缺损一直以来是临床难题,中药有效成分在骨修复方面具有良好的生物活性与治疗效果,将中药有效成分与组织工程材料相结合在骨修复领域具有广阔的前景。不同中药有效成分与支架的组合在作用关系方面具有相似之处。目的:搜集常见的中药有效成分与支架材料组合的案例,基于七情配伍的启发将组织工程支架与中药有效成分类比为产生配伍关系的两类中药,以二者的作用关系为纲进行归纳总结。方法:检索1998年1月至2024年1月Pub Med和中国知网数据库中发表的相关文献,英文检索词:“traditional Chinese medicine,Chinese medicine,traditional Chinese medicine monomers,bone defect,bone repair,bone tissue engineering,tissue engineering,scaffold”,中文检索词:“中药,中药有效成分,中药单体,骨组织工程,骨组织工程支架,支架,组织工程,骨缺损,骨修复”,最终纳入88篇文献进行综述分析。结果与结论:(1)组织工程支架材料与中药有效成分各自均在骨修复领域有广泛的运用,二者在成骨方面优势明显但仍有许多缺陷,许多研究致力于将二者制备成复合材料,希望通过二者间的相互作用发挥减毒增效作用。(2)一些药物与材料在成骨、抗菌、促血管生成方面能互相促进,增强原有的效果,受到传统方剂配伍观念的启发,文章将其归纳为“相须”关系,并举实例佐证。(3)一些药物能提高材料的强度,而某些材料能对负载于其上的药物实现缓释控释效果、增加载药量与稳定性,或是进行靶向递送,文章将这种单方面的提升效果归纳为“相使”关系。(4)一些中药与材料搭配使用能减少对方的毒副反应,文章将这种减毒关系归纳为“相畏相杀”。(5)文章得出了一个由七情配伍关系启发、基于作用关系分类的关于中药复合支架的全新视角,将中药传统观念引入组织工程领域,为后续复合支架的研究者提供新的研究思路,并在选材搭配方面提供一定的便利。展开更多
背景:石墨烯是最薄、最强韧的一类二维新型晶体材料,在生物医学的应用中显示出巨大的优势。血管生成和血管化骨是组织修复和再生的关键,是解决血管和成骨问题的有效途径。目的:综述石墨烯及其衍生物促进血管生成和血管化骨的特性及机制...背景:石墨烯是最薄、最强韧的一类二维新型晶体材料,在生物医学的应用中显示出巨大的优势。血管生成和血管化骨是组织修复和再生的关键,是解决血管和成骨问题的有效途径。目的:综述石墨烯及其衍生物促进血管生成和血管化骨的特性及机制,为其在血管化组织修复与再生的临床应用提供参考。方法:利用计算机检索PubMed、ScienceDirect、中国知网和万方数据库收录的相关文献,中文检索词为“石墨烯,血管生成,血管化,血管化骨,内皮细胞”,英文检索词为“graphene,Angiogenesis OR Vascularization,Vascularized bone,endothelial cells”。排除与文章主题不相关的文献,根据纳入标准和排除标准,最终纳入62篇文献进行结果分析。结果与结论:①目前氧化石墨烯在石墨烯及其衍生物中的研究较多,应用最为广泛。②石墨烯及其衍生物适用于心脏、骨、神经和创伤愈合等相关疾病。③石墨烯及其衍生物有优异的理化性能和生物学性能,但其存在潜在的细胞毒性,在应用中需注意其生物安全性。④石墨烯及其衍生物的应用还需要进一步的研究来证明其最适尺寸和浓度及降低毒性的措施。⑤就细胞层面而言,石墨烯及其衍生物可以通过促进尖端内皮细胞表型、间充质干细胞黏附和增殖、血管平滑肌细胞的生长,从而促进血管生成活性。⑥就分子层面而言,石墨烯及其衍生物可以增加血管内皮生长因子、碱性成纤维细胞生长因子及肝细胞生长因子等的表达并活化活性氧/一氧化氮合酶/一氧化氮信号通路、溶血磷脂酸R6/Hippo-YAP通路、基质细胞衍生因子1/血管内皮生长因子和ZEB1/Notch1通路。⑦氧化石墨烯和氧化石墨烯-铜可以磷酸化细胞外调节蛋白激酶并激活缺氧诱导因子1,进而促进血管内皮生长因子和骨形态生成蛋白2的表达上调,从而促进血管生成和血管化骨。⑧因此,石墨烯及其衍生物特别是氧化石墨烯由于具有优良的生物学性能、良好的促血管生成及促血管化骨能力,在血管化组织修复与再生方面有很大的应用前景。展开更多
Objective:To investigate the effect of BMP-7 derived-peptide chitosan nanometer hydroxyapatite biomimetic collagen composite on repairing rat critical-sized cranial defects.Methods:The chitosan nanometer hydroxyapatit...Objective:To investigate the effect of BMP-7 derived-peptide chitosan nanometer hydroxyapatite biomimetic collagen composite on repairing rat critical-sized cranial defects.Methods:The chitosan nanometer hydroxyapatite collagen composite was prepared and the microcosmic appearance of the composite was observed by scanning electron microscope.The BMP-7 derived-peptide was introduced into the composite by vacuum adsorption.The released peptide content from the scaffold was detected using high performance liquid chromatography at different set times.Critical-sized cranial defects were created on both sides of the parietal bone in 24 adult Sprague-Dawley rats.The BMP-7 derived-peptide chitosan nanometer hydroxyapatite biomimetic collagen composites were implanted on the right side as experimental group and the left side was implanted with chitosan nanometer hydroxyapatite biomimetic collagen composites alone as control group.The rats of both groups were killed in batch respectively after 6 and 12 weeks.Macroscopic observation,three-dimensional reconstruction of computed tomography(CT)and histological observation were performed on these samples.Results:The results of scanning electron microscope showed that the surface of the scaffold was porous.The releasing character of BMP-7 derived-peptide belonged to slow release.The result of animal experiment showed that the BMP-7 derived-peptide chitosan nanometer hydroxyapatite biomimetic collagen composite could more effectively promote the repair of cranial bone defects comparing with the chitosan nanometer hydroxyapatite biomimetic collagen composite alone.The difference was statistically significant(p<.05).Conclusions:The BMP-7 derived-peptide chitosan nanometer hydroxyapatite collagen biomimetic composite can effectively promote bone regeneration of bone defects.The composite is a kind of ideal scaffold material for bone tissue engineering.展开更多
背景:随着化学合成技术的发展,根据生物活性支架材料的特性,经材料设计和材料结合而制备多组分、多功能的复合材料支架,进而修复骨质疏松性骨缺损已成为当今的研究热点。目的:介绍生物活性骨组织工程支架材料,讨论并总结不同支架材料及...背景:随着化学合成技术的发展,根据生物活性支架材料的特性,经材料设计和材料结合而制备多组分、多功能的复合材料支架,进而修复骨质疏松性骨缺损已成为当今的研究热点。目的:介绍生物活性骨组织工程支架材料,讨论并总结不同支架材料及其设计在修复骨质疏松性骨缺损中的应用。方法:作者以“Osteoporosis,Bone defect,Scaffold,骨质疏松,骨缺损,支架”为关键词,检索2008-2022年期间PubMed、Web of Science、Springerlink、Medline、万方、CNKI数据库,选择生物活性支架修复骨质疏松性骨缺损方面的的相关文献。结果与结论:生物活性支架的植入为修复骨质疏松性骨缺损带来了新的方法,如金属材料、生物陶瓷、聚合物等生物活性支架均有良好的促进骨再生作用。但是在骨质疏松的不平衡骨改建下,单一材料支架促进骨再生能力有限,且经常出现骨整合不良。研究者们根据理想支架的特性和各种材料的优缺点,通过材料结合和设计将生物活性物质纳入支架中,设计制备了一系列功能化的生物活性复合材料支架,以改善骨改建和增强骨整合。随着对各类型生物活性支架材料的深入了解,明确其优劣势及局限性,立足支架设计思想,从单一成分到多组分的结合,通过表面修饰、3D打印等各种手段,一定会逐步实现生物活性支架在骨质疏松性骨缺损治疗中更加多功能化、高效率的应用。展开更多
基金supported by grants from the National Natural Science Foundation of China(52205363)Fundamental Research Funds for the Central Universities(2019kfyRCPY044 and 2021GCRC002)+3 种基金Program for HUST Academic Frontier Youth Team(2018QYTD04)Program for Innovative Research Team of the Ministry of Education(IRT1244)Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project:HZQB-KCZYB-2020030the Guangdong Provincial Department of Science and Technology(Key-Area Research and Development Program of Guangdong Province)under the Grant 2020B090923002。
文摘Piezoelectricity in native bones has been well recognized as the key factor in bone regeneration.Thus,bio-piezoelectric materials have gained substantial attention in repairing damaged bone by mimicking the tissue’s electrical microenvironment(EM).However,traditional manufacturing strategies still encounter limitations in creating personalized bio-piezoelectric scaffolds,hindering their clinical applications.Three-dimensional(3D)/four-dimensional(4D)printing technology based on the principle of layer-by-layer forming and stacking of discrete materials has demonstrated outstanding advantages in fabricating bio-piezoelectric scaffolds in a more complex-shaped structure.Notably,4D printing functionality-shifting bio-piezoelectric scaffolds can provide a time-dependent programmable tissue EM in response to external stimuli for bone regeneration.In this review,we first summarize the physicochemical properties of commonly used bio-piezoelectric materials(including polymers,ceramics,and their composites)and representative biological findings for bone regeneration.Then,we discuss the latest research advances in the 3D printing of bio-piezoelectric scaffolds in terms of feedstock selection,printing process,induction strategies,and potential applications.Besides,some related challenges such as feedstock scalability,printing resolution,stress-to-polarization conversion efficiency,and non-invasive induction ability after implantation have been put forward.Finally,we highlight the potential of shape/property/functionality-shifting smart 4D bio-piezoelectric scaffolds in bone tissue engineering(BTE).Taken together,this review emphasizes the appealing utility of 3D/4D printed biological piezoelectric scaffolds as next-generation BTE implants.
文摘背景:股骨头坏死出现新月征是病情进程的“分水岭”,修复和稳定骨-软骨界面对阻止病情继续进展和预防股骨头塌陷尤为重要。利用组织工程学同步修复、整合骨-软骨界面具有潜在优势。目的:综述探讨解决股骨头坏死软骨下分离的潜在适宜技术。方法:检索1970年1月至2023年4月PubMed、Web of Science及中国知网、万方数据库中发表的相关文献,英文检索词:“Femoral head necrosis,Avascular necrosis of femoral head,Osteonecrosis of femoral head”等,中文检索词:“股骨头坏死,软骨下骨,软骨,软骨与软骨下骨整合”等,最终纳入114篇文献进行综述分析。结果与结论:①结构缺陷、缺血缺氧环境、炎症因素和应力集中可能造成股骨头坏死软骨下分离现象,软骨下骨分离会造成塌陷进展,并且可能与保髋手术失败相关,利用组织工程支架实现支架与骨-软骨界面的整合是治疗股骨头坏死软骨下分离的潜在方法之一。②目前的文献研究表明,多相、梯度支架和复合材料在促进骨、软骨细胞黏附与增殖,骨软骨基质的沉积方面均有提升,有助于支架与骨-软骨界面的整合,对治疗股骨头坏死软骨下分离有参考价值。③通过对支架表面进行修饰可以提高与界面整合的效率,但有各自不同的优缺点,提供不同环境的支架能够诱导同种间充质干细胞差异分化,有助于不同界面之间的整合。④未来有望应用于股骨头坏死软骨下分离的支架应为复合材料,具有梯度化和差异化的仿生结构,通过表面修饰和干细胞加载促进骨-软骨界面与支架的整合以实现治疗目的,但仍需进一步研究验证,而支架的降解速率与修复进度同步和不同界面之间的稳定性是未来需要解决的主要问题。
文摘背景:如何修复骨缺损一直以来是临床难题,中药有效成分在骨修复方面具有良好的生物活性与治疗效果,将中药有效成分与组织工程材料相结合在骨修复领域具有广阔的前景。不同中药有效成分与支架的组合在作用关系方面具有相似之处。目的:搜集常见的中药有效成分与支架材料组合的案例,基于七情配伍的启发将组织工程支架与中药有效成分类比为产生配伍关系的两类中药,以二者的作用关系为纲进行归纳总结。方法:检索1998年1月至2024年1月Pub Med和中国知网数据库中发表的相关文献,英文检索词:“traditional Chinese medicine,Chinese medicine,traditional Chinese medicine monomers,bone defect,bone repair,bone tissue engineering,tissue engineering,scaffold”,中文检索词:“中药,中药有效成分,中药单体,骨组织工程,骨组织工程支架,支架,组织工程,骨缺损,骨修复”,最终纳入88篇文献进行综述分析。结果与结论:(1)组织工程支架材料与中药有效成分各自均在骨修复领域有广泛的运用,二者在成骨方面优势明显但仍有许多缺陷,许多研究致力于将二者制备成复合材料,希望通过二者间的相互作用发挥减毒增效作用。(2)一些药物与材料在成骨、抗菌、促血管生成方面能互相促进,增强原有的效果,受到传统方剂配伍观念的启发,文章将其归纳为“相须”关系,并举实例佐证。(3)一些药物能提高材料的强度,而某些材料能对负载于其上的药物实现缓释控释效果、增加载药量与稳定性,或是进行靶向递送,文章将这种单方面的提升效果归纳为“相使”关系。(4)一些中药与材料搭配使用能减少对方的毒副反应,文章将这种减毒关系归纳为“相畏相杀”。(5)文章得出了一个由七情配伍关系启发、基于作用关系分类的关于中药复合支架的全新视角,将中药传统观念引入组织工程领域,为后续复合支架的研究者提供新的研究思路,并在选材搭配方面提供一定的便利。
文摘背景:石墨烯是最薄、最强韧的一类二维新型晶体材料,在生物医学的应用中显示出巨大的优势。血管生成和血管化骨是组织修复和再生的关键,是解决血管和成骨问题的有效途径。目的:综述石墨烯及其衍生物促进血管生成和血管化骨的特性及机制,为其在血管化组织修复与再生的临床应用提供参考。方法:利用计算机检索PubMed、ScienceDirect、中国知网和万方数据库收录的相关文献,中文检索词为“石墨烯,血管生成,血管化,血管化骨,内皮细胞”,英文检索词为“graphene,Angiogenesis OR Vascularization,Vascularized bone,endothelial cells”。排除与文章主题不相关的文献,根据纳入标准和排除标准,最终纳入62篇文献进行结果分析。结果与结论:①目前氧化石墨烯在石墨烯及其衍生物中的研究较多,应用最为广泛。②石墨烯及其衍生物适用于心脏、骨、神经和创伤愈合等相关疾病。③石墨烯及其衍生物有优异的理化性能和生物学性能,但其存在潜在的细胞毒性,在应用中需注意其生物安全性。④石墨烯及其衍生物的应用还需要进一步的研究来证明其最适尺寸和浓度及降低毒性的措施。⑤就细胞层面而言,石墨烯及其衍生物可以通过促进尖端内皮细胞表型、间充质干细胞黏附和增殖、血管平滑肌细胞的生长,从而促进血管生成活性。⑥就分子层面而言,石墨烯及其衍生物可以增加血管内皮生长因子、碱性成纤维细胞生长因子及肝细胞生长因子等的表达并活化活性氧/一氧化氮合酶/一氧化氮信号通路、溶血磷脂酸R6/Hippo-YAP通路、基质细胞衍生因子1/血管内皮生长因子和ZEB1/Notch1通路。⑦氧化石墨烯和氧化石墨烯-铜可以磷酸化细胞外调节蛋白激酶并激活缺氧诱导因子1,进而促进血管内皮生长因子和骨形态生成蛋白2的表达上调,从而促进血管生成和血管化骨。⑧因此,石墨烯及其衍生物特别是氧化石墨烯由于具有优良的生物学性能、良好的促血管生成及促血管化骨能力,在血管化组织修复与再生方面有很大的应用前景。
文摘Objective:To investigate the effect of BMP-7 derived-peptide chitosan nanometer hydroxyapatite biomimetic collagen composite on repairing rat critical-sized cranial defects.Methods:The chitosan nanometer hydroxyapatite collagen composite was prepared and the microcosmic appearance of the composite was observed by scanning electron microscope.The BMP-7 derived-peptide was introduced into the composite by vacuum adsorption.The released peptide content from the scaffold was detected using high performance liquid chromatography at different set times.Critical-sized cranial defects were created on both sides of the parietal bone in 24 adult Sprague-Dawley rats.The BMP-7 derived-peptide chitosan nanometer hydroxyapatite biomimetic collagen composites were implanted on the right side as experimental group and the left side was implanted with chitosan nanometer hydroxyapatite biomimetic collagen composites alone as control group.The rats of both groups were killed in batch respectively after 6 and 12 weeks.Macroscopic observation,three-dimensional reconstruction of computed tomography(CT)and histological observation were performed on these samples.Results:The results of scanning electron microscope showed that the surface of the scaffold was porous.The releasing character of BMP-7 derived-peptide belonged to slow release.The result of animal experiment showed that the BMP-7 derived-peptide chitosan nanometer hydroxyapatite biomimetic collagen composite could more effectively promote the repair of cranial bone defects comparing with the chitosan nanometer hydroxyapatite biomimetic collagen composite alone.The difference was statistically significant(p<.05).Conclusions:The BMP-7 derived-peptide chitosan nanometer hydroxyapatite collagen biomimetic composite can effectively promote bone regeneration of bone defects.The composite is a kind of ideal scaffold material for bone tissue engineering.
文摘背景:随着化学合成技术的发展,根据生物活性支架材料的特性,经材料设计和材料结合而制备多组分、多功能的复合材料支架,进而修复骨质疏松性骨缺损已成为当今的研究热点。目的:介绍生物活性骨组织工程支架材料,讨论并总结不同支架材料及其设计在修复骨质疏松性骨缺损中的应用。方法:作者以“Osteoporosis,Bone defect,Scaffold,骨质疏松,骨缺损,支架”为关键词,检索2008-2022年期间PubMed、Web of Science、Springerlink、Medline、万方、CNKI数据库,选择生物活性支架修复骨质疏松性骨缺损方面的的相关文献。结果与结论:生物活性支架的植入为修复骨质疏松性骨缺损带来了新的方法,如金属材料、生物陶瓷、聚合物等生物活性支架均有良好的促进骨再生作用。但是在骨质疏松的不平衡骨改建下,单一材料支架促进骨再生能力有限,且经常出现骨整合不良。研究者们根据理想支架的特性和各种材料的优缺点,通过材料结合和设计将生物活性物质纳入支架中,设计制备了一系列功能化的生物活性复合材料支架,以改善骨改建和增强骨整合。随着对各类型生物活性支架材料的深入了解,明确其优劣势及局限性,立足支架设计思想,从单一成分到多组分的结合,通过表面修饰、3D打印等各种手段,一定会逐步实现生物活性支架在骨质疏松性骨缺损治疗中更加多功能化、高效率的应用。