This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree(AHAboosted)model for predicting the dynamic modulus(E*)of hot mix asphalt concrete.Using a substantial dataset from N...This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree(AHAboosted)model for predicting the dynamic modulus(E*)of hot mix asphalt concrete.Using a substantial dataset from NCHRP Report-547,the model was trained and rigorously tested.Performance metrics,specifically RMSE,MAE,and R2,were employed to assess the model's predictive accuracy,robustness,and generalisability.When benchmarked against well-established models like support vector machines(SVM)and gaussian process regression(GPR),the AHA-boosted model demonstrated enhanced performance.It achieved R2 values of 0.997 in training and 0.974 in testing,using the traditional Witczak NCHRP 1-40D model inputs.Incorporating features such as test temperature,frequency,and asphalt content led to a 1.23%increase in the test R2,signifying an improvement in the model's accuracy.The study also explored feature importance and sensitivity through SHAP and permutation importance plots,highlighting binder complex modulus|G*|as a key predictor.Although the AHA-boosted model shows promise,a slight decrease in R2 from training to testing indicates a need for further validation.Overall,this study confirms the AHA-boosted model as a highly accurate and robust tool for predicting the dynamic modulus of hot mix asphalt concrete,making it a valuable asset for pavement engineering.展开更多
Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for st...Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection.展开更多
To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the accele...To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the acceleration signal of the bridge structure through data reconstruction.The extreme gradient boosting tree(XGBoost)was then used to perform analysis on the feature data to achieve damage detection with high accuracy and high performance.The proposed method was applied in a numerical simulation study on a three-span continuous girder and further validated experimentally on a scaled model of a cable-stayed bridge.The numerical simulation results show that the identification errors remain within 2.9%for six single-damage cases and within 3.1%for four double-damage cases.The experimental validation results demonstrate that when the tension in a single cable of the cable-stayed bridge decreases by 20%,the method accurately identifies damage at different cable locations using only sensors installed on the main girder,achieving identification accuracies above 95.8%in all cases.The proposed method shows high identification accuracy and generalization ability across various damage scenarios.展开更多
BACKGROUND Development of distant metastasis(DM)is a major concern during treatment of nasopharyngeal carcinoma(NPC).However,studies have demonstrated im-proved distant control and survival in patients with advanced N...BACKGROUND Development of distant metastasis(DM)is a major concern during treatment of nasopharyngeal carcinoma(NPC).However,studies have demonstrated im-proved distant control and survival in patients with advanced NPC with the addition of chemotherapy to concomitant chemoradiotherapy.Therefore,precise prediction of metastasis in patients with NPC is crucial.AIM To develop a predictive model for metastasis in NPC using detailed magnetic resonance imaging(MRI)reports.METHODS This retrospective study included 792 patients with non-distant metastatic NPC.A total of 469 imaging variables were obtained from detailed MRI reports.Data were stratified and randomly split into training(50%)and testing sets.Gradient boosting tree(GBT)models were built and used to select variables for predicting DM.A full model comprising all variables and a reduced model with the top-five variables were built.Model performance was assessed by area under the curve(AUC).RESULTS Among the 792 patients,94 developed DM during follow-up.The number of metastatic cervical nodes(30.9%),tumor invasion in the posterior half of the nasal cavity(9.7%),two sides of the pharyngeal recess(6.2%),tubal torus(3.3%),and single side of the parapharyngeal space(2.7%)were the top-five contributors for predicting DM,based on their relative importance in GBT models.The testing AUC of the full model was 0.75(95%confidence interval[CI]:0.69-0.82).The testing AUC of the reduced model was 0.75(95%CI:0.68-0.82).For the whole dataset,the full(AUC=0.76,95%CI:0.72-0.82)and reduced models(AUC=0.76,95%CI:0.71-0.81)outperformed the tumor node-staging system(AUC=0.67,95%CI:0.61-0.73).CONCLUSION The GBT model outperformed the tumor node-staging system in predicting metastasis in NPC.The number of metastatic cervical nodes was identified as the principal contributing variable.展开更多
Accurate prediction ofmonthly oil and gas production is essential for oil enterprises tomake reasonable production plans,avoid blind investment and realize sustainable development.Traditional oil well production trend...Accurate prediction ofmonthly oil and gas production is essential for oil enterprises tomake reasonable production plans,avoid blind investment and realize sustainable development.Traditional oil well production trend prediction methods are based on years of oil field production experience and expertise,and the application conditions are very demanding.With the rapid development of artificial intelligence technology,big data analysis methods are gradually applied in various sub-fields of the oil and gas reservoir development.Based on the data-driven artificial intelligence algorithmGradient BoostingDecision Tree(GBDT),this paper predicts the initial single-layer production by considering geological data,fluid PVT data and well data.The results show that the GBDT algorithm prediction model has great accuracy,significantly improving efficiency and strong universal applicability.The GBDTmethod trained in this paper can predict production,which is helpful for well site optimization,perforation layer optimization and engineering parameter optimization and has guiding significance for oilfield development.展开更多
Challenges in Big Data analysis arise due to the way the data are recorded, maintained, processed and stored. We demonstrate that a hierarchical, multivariate, statistical machine learning algorithm, namely Boosted Re...Challenges in Big Data analysis arise due to the way the data are recorded, maintained, processed and stored. We demonstrate that a hierarchical, multivariate, statistical machine learning algorithm, namely Boosted Regression Tree (BRT) can address Big Data challenges to drive decision making. The challenge of this study is lack of interoperability since the data, a collection of GIS shapefiles, remotely sensed imagery, and aggregated and interpolated spatio-temporal information, are stored in monolithic hardware components. For the modelling process, it was necessary to create one common input file. By merging the data sources together, a structured but noisy input file, showing inconsistencies and redundancies, was created. Here, it is shown that BRT can process different data granularities, heterogeneous data and missingness. In particular, BRT has the advantage of dealing with missing data by default by allowing a split on whether or not a value is missing as well as what the value is. Most importantly, the BRT offers a wide range of possibilities regarding the interpretation of results and variable selection is automatically performed by considering how frequently a variable is used to define a split in the tree. A comparison with two similar regression models (Random Forests and Least Absolute Shrinkage and Selection Operator, LASSO) shows that BRT outperforms these in this instance. BRT can also be a starting point for sophisticated hierarchical modelling in real world scenarios. For example, a single or ensemble approach of BRT could be tested with existing models in order to improve results for a wide range of data-driven decisions and applications.展开更多
文摘This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree(AHAboosted)model for predicting the dynamic modulus(E*)of hot mix asphalt concrete.Using a substantial dataset from NCHRP Report-547,the model was trained and rigorously tested.Performance metrics,specifically RMSE,MAE,and R2,were employed to assess the model's predictive accuracy,robustness,and generalisability.When benchmarked against well-established models like support vector machines(SVM)and gaussian process regression(GPR),the AHA-boosted model demonstrated enhanced performance.It achieved R2 values of 0.997 in training and 0.974 in testing,using the traditional Witczak NCHRP 1-40D model inputs.Incorporating features such as test temperature,frequency,and asphalt content led to a 1.23%increase in the test R2,signifying an improvement in the model's accuracy.The study also explored feature importance and sensitivity through SHAP and permutation importance plots,highlighting binder complex modulus|G*|as a key predictor.Although the AHA-boosted model shows promise,a slight decrease in R2 from training to testing indicates a need for further validation.Overall,this study confirms the AHA-boosted model as a highly accurate and robust tool for predicting the dynamic modulus of hot mix asphalt concrete,making it a valuable asset for pavement engineering.
基金supported by the National Nat-ural Science Foundation of China(No.52203376)the National Key Research and Development Program of China(No.2023YFB3813200).
文摘Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection.
基金The National Natural Science Foundation of China(No.52361165658,52378318,52078459).
文摘To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the acceleration signal of the bridge structure through data reconstruction.The extreme gradient boosting tree(XGBoost)was then used to perform analysis on the feature data to achieve damage detection with high accuracy and high performance.The proposed method was applied in a numerical simulation study on a three-span continuous girder and further validated experimentally on a scaled model of a cable-stayed bridge.The numerical simulation results show that the identification errors remain within 2.9%for six single-damage cases and within 3.1%for four double-damage cases.The experimental validation results demonstrate that when the tension in a single cable of the cable-stayed bridge decreases by 20%,the method accurately identifies damage at different cable locations using only sensors installed on the main girder,achieving identification accuracies above 95.8%in all cases.The proposed method shows high identification accuracy and generalization ability across various damage scenarios.
文摘BACKGROUND Development of distant metastasis(DM)is a major concern during treatment of nasopharyngeal carcinoma(NPC).However,studies have demonstrated im-proved distant control and survival in patients with advanced NPC with the addition of chemotherapy to concomitant chemoradiotherapy.Therefore,precise prediction of metastasis in patients with NPC is crucial.AIM To develop a predictive model for metastasis in NPC using detailed magnetic resonance imaging(MRI)reports.METHODS This retrospective study included 792 patients with non-distant metastatic NPC.A total of 469 imaging variables were obtained from detailed MRI reports.Data were stratified and randomly split into training(50%)and testing sets.Gradient boosting tree(GBT)models were built and used to select variables for predicting DM.A full model comprising all variables and a reduced model with the top-five variables were built.Model performance was assessed by area under the curve(AUC).RESULTS Among the 792 patients,94 developed DM during follow-up.The number of metastatic cervical nodes(30.9%),tumor invasion in the posterior half of the nasal cavity(9.7%),two sides of the pharyngeal recess(6.2%),tubal torus(3.3%),and single side of the parapharyngeal space(2.7%)were the top-five contributors for predicting DM,based on their relative importance in GBT models.The testing AUC of the full model was 0.75(95%confidence interval[CI]:0.69-0.82).The testing AUC of the reduced model was 0.75(95%CI:0.68-0.82).For the whole dataset,the full(AUC=0.76,95%CI:0.72-0.82)and reduced models(AUC=0.76,95%CI:0.71-0.81)outperformed the tumor node-staging system(AUC=0.67,95%CI:0.61-0.73).CONCLUSION The GBT model outperformed the tumor node-staging system in predicting metastasis in NPC.The number of metastatic cervical nodes was identified as the principal contributing variable.
文摘Accurate prediction ofmonthly oil and gas production is essential for oil enterprises tomake reasonable production plans,avoid blind investment and realize sustainable development.Traditional oil well production trend prediction methods are based on years of oil field production experience and expertise,and the application conditions are very demanding.With the rapid development of artificial intelligence technology,big data analysis methods are gradually applied in various sub-fields of the oil and gas reservoir development.Based on the data-driven artificial intelligence algorithmGradient BoostingDecision Tree(GBDT),this paper predicts the initial single-layer production by considering geological data,fluid PVT data and well data.The results show that the GBDT algorithm prediction model has great accuracy,significantly improving efficiency and strong universal applicability.The GBDTmethod trained in this paper can predict production,which is helpful for well site optimization,perforation layer optimization and engineering parameter optimization and has guiding significance for oilfield development.
文摘Challenges in Big Data analysis arise due to the way the data are recorded, maintained, processed and stored. We demonstrate that a hierarchical, multivariate, statistical machine learning algorithm, namely Boosted Regression Tree (BRT) can address Big Data challenges to drive decision making. The challenge of this study is lack of interoperability since the data, a collection of GIS shapefiles, remotely sensed imagery, and aggregated and interpolated spatio-temporal information, are stored in monolithic hardware components. For the modelling process, it was necessary to create one common input file. By merging the data sources together, a structured but noisy input file, showing inconsistencies and redundancies, was created. Here, it is shown that BRT can process different data granularities, heterogeneous data and missingness. In particular, BRT has the advantage of dealing with missing data by default by allowing a split on whether or not a value is missing as well as what the value is. Most importantly, the BRT offers a wide range of possibilities regarding the interpretation of results and variable selection is automatically performed by considering how frequently a variable is used to define a split in the tree. A comparison with two similar regression models (Random Forests and Least Absolute Shrinkage and Selection Operator, LASSO) shows that BRT outperforms these in this instance. BRT can also be a starting point for sophisticated hierarchical modelling in real world scenarios. For example, a single or ensemble approach of BRT could be tested with existing models in order to improve results for a wide range of data-driven decisions and applications.
文摘小时天然气负荷预测受外部特征因素与预测方法的影响,为提高其预测精度并解决其他深度学习类模型或组合模型可解释性差、训练时间过长的问题,在引入“小时影响度”这一新特征因素的同时提出一种基于极端梯度提升树(extreme gradient boosting tress,XGBoost)模型与可解释性神经网络模型NBEATSx组合预测的方法;以XGBoost模型作为特征筛选器对特征集数据进行筛选,再将筛选降维后的数据集输入到NBEATSx中训练,提高NBEATSx的训练速度与预测精度;将负荷数据与特征数据经STL(seasonal and trend decomposition using Loess)算法分解为趋势分量、季节分量与残差分量,再分别输入到XGBoost中进行预测,减弱原始数据中的噪音影响;将优化后的NBEATSx与XGBoost模型通过方差倒数法进行组合,得出STL-XGBoost-NBEATSx组合模型的预测结果。结果表明:“小时影响度”这一新特征是小时负荷预测的重要影响因素,STL-XGBoost-NBEATSx模型训练速度有所提高,具有良好的可解释性与更高的预测准确性,模型预测结果的平均绝对百分比误差、均方误差、平均绝对误差分别比其余单一模型平均降低54.20%、63.97%、49.72%,比其余组合模型平均降低24.85%、34.39%、23.41%,模型的决定系数为0.935,能够很好地拟合观测数据。