期刊文献+
共找到663篇文章
< 1 2 34 >
每页显示 20 50 100
Enhanced asphalt dynamic modulus prediction: A detailed analysis of artificial hummingbird algorithm-optimised boosted trees
1
作者 Ikenna D.Uwanuakwa Ilham Yahya Amir Lyce Ndolo Umba 《Journal of Road Engineering》 2024年第2期224-233,共10页
This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree(AHAboosted)model for predicting the dynamic modulus(E*)of hot mix asphalt concrete.Using a substantial dataset from N... This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree(AHAboosted)model for predicting the dynamic modulus(E*)of hot mix asphalt concrete.Using a substantial dataset from NCHRP Report-547,the model was trained and rigorously tested.Performance metrics,specifically RMSE,MAE,and R2,were employed to assess the model's predictive accuracy,robustness,and generalisability.When benchmarked against well-established models like support vector machines(SVM)and gaussian process regression(GPR),the AHA-boosted model demonstrated enhanced performance.It achieved R2 values of 0.997 in training and 0.974 in testing,using the traditional Witczak NCHRP 1-40D model inputs.Incorporating features such as test temperature,frequency,and asphalt content led to a 1.23%increase in the test R2,signifying an improvement in the model's accuracy.The study also explored feature importance and sensitivity through SHAP and permutation importance plots,highlighting binder complex modulus|G*|as a key predictor.Although the AHA-boosted model shows promise,a slight decrease in R2 from training to testing indicates a need for further validation.Overall,this study confirms the AHA-boosted model as a highly accurate and robust tool for predicting the dynamic modulus of hot mix asphalt concrete,making it a valuable asset for pavement engineering. 展开更多
关键词 ASPHALT Dynamic modulus PREDICTION Artificial hummingbird algorithm boosted tree
下载PDF
Stress-assisted corrosion mechanism of 3Ni steel by using gradient boosting decision tree machining learning method 被引量:1
2
作者 Xiaojia Yang Jinghuan Jia +5 位作者 Qing Li Renzheng Zhu Jike Yang Zhiyong Liu Xuequn Cheng Xiaogang Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1311-1321,共11页
Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for st... Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection. 展开更多
关键词 weathering steel stress-assisted corrosion gradient boosting decision tree machining learning
下载PDF
Bridge damage identification based on convolutional autoencoders and extreme gradient boosting trees
3
作者 Duan Yuanfeng Duan Zhengteng +1 位作者 Zhang Hongmei Cheng JJRoger 《Journal of Southeast University(English Edition)》 EI CAS 2024年第3期221-229,共9页
To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the accele... To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the acceleration signal of the bridge structure through data reconstruction.The extreme gradient boosting tree(XGBoost)was then used to perform analysis on the feature data to achieve damage detection with high accuracy and high performance.The proposed method was applied in a numerical simulation study on a three-span continuous girder and further validated experimentally on a scaled model of a cable-stayed bridge.The numerical simulation results show that the identification errors remain within 2.9%for six single-damage cases and within 3.1%for four double-damage cases.The experimental validation results demonstrate that when the tension in a single cable of the cable-stayed bridge decreases by 20%,the method accurately identifies damage at different cable locations using only sensors installed on the main girder,achieving identification accuracies above 95.8%in all cases.The proposed method shows high identification accuracy and generalization ability across various damage scenarios. 展开更多
关键词 structural health monitoring damage identification convolutional autoencoder(CAE) extreme gradient boosting tree(XGBoost) machine learning
下载PDF
Predicting distant metastasis in nasopharyngeal carcinoma using gradient boosting tree model based on detailed magnetic resonance imaging reports
4
作者 Yu-Liang Zhu Xin-Lei Deng +7 位作者 Xu-Cheng Zhang Li Tian Chun-Yan Cui Feng Lei Gui-Qiong Xu Hao-Jiang Li Li-Zhi Liu Hua-Li Ma 《World Journal of Radiology》 2024年第6期203-210,共8页
BACKGROUND Development of distant metastasis(DM)is a major concern during treatment of nasopharyngeal carcinoma(NPC).However,studies have demonstrated im-proved distant control and survival in patients with advanced N... BACKGROUND Development of distant metastasis(DM)is a major concern during treatment of nasopharyngeal carcinoma(NPC).However,studies have demonstrated im-proved distant control and survival in patients with advanced NPC with the addition of chemotherapy to concomitant chemoradiotherapy.Therefore,precise prediction of metastasis in patients with NPC is crucial.AIM To develop a predictive model for metastasis in NPC using detailed magnetic resonance imaging(MRI)reports.METHODS This retrospective study included 792 patients with non-distant metastatic NPC.A total of 469 imaging variables were obtained from detailed MRI reports.Data were stratified and randomly split into training(50%)and testing sets.Gradient boosting tree(GBT)models were built and used to select variables for predicting DM.A full model comprising all variables and a reduced model with the top-five variables were built.Model performance was assessed by area under the curve(AUC).RESULTS Among the 792 patients,94 developed DM during follow-up.The number of metastatic cervical nodes(30.9%),tumor invasion in the posterior half of the nasal cavity(9.7%),two sides of the pharyngeal recess(6.2%),tubal torus(3.3%),and single side of the parapharyngeal space(2.7%)were the top-five contributors for predicting DM,based on their relative importance in GBT models.The testing AUC of the full model was 0.75(95%confidence interval[CI]:0.69-0.82).The testing AUC of the reduced model was 0.75(95%CI:0.68-0.82).For the whole dataset,the full(AUC=0.76,95%CI:0.72-0.82)and reduced models(AUC=0.76,95%CI:0.71-0.81)outperformed the tumor node-staging system(AUC=0.67,95%CI:0.61-0.73).CONCLUSION The GBT model outperformed the tumor node-staging system in predicting metastasis in NPC.The number of metastatic cervical nodes was identified as the principal contributing variable. 展开更多
关键词 Nasopharyngeal carcinoma Distant metastasis Machine learning Detailed magnetic resonance imaging report Gradient boosting tree model
下载PDF
A Data-Driven Oil Production Prediction Method Based on the Gradient Boosting Decision Tree Regression 被引量:1
5
作者 Hongfei Ma Wenqi Zhao +1 位作者 Yurong Zhao Yu He 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1773-1790,共18页
Accurate prediction ofmonthly oil and gas production is essential for oil enterprises tomake reasonable production plans,avoid blind investment and realize sustainable development.Traditional oil well production trend... Accurate prediction ofmonthly oil and gas production is essential for oil enterprises tomake reasonable production plans,avoid blind investment and realize sustainable development.Traditional oil well production trend prediction methods are based on years of oil field production experience and expertise,and the application conditions are very demanding.With the rapid development of artificial intelligence technology,big data analysis methods are gradually applied in various sub-fields of the oil and gas reservoir development.Based on the data-driven artificial intelligence algorithmGradient BoostingDecision Tree(GBDT),this paper predicts the initial single-layer production by considering geological data,fluid PVT data and well data.The results show that the GBDT algorithm prediction model has great accuracy,significantly improving efficiency and strong universal applicability.The GBDTmethod trained in this paper can predict production,which is helpful for well site optimization,perforation layer optimization and engineering parameter optimization and has guiding significance for oilfield development. 展开更多
关键词 Gradient boosting decision tree production prediction data analysis
下载PDF
Using Boosted Regression Trees and Remotely Sensed Data to Drive Decision-Making
6
作者 Brigitte Colin Samuel Clifford +2 位作者 Paul Wu Samuel Rathmanner Kerrie Mengersen 《Open Journal of Statistics》 2017年第5期859-875,共17页
Challenges in Big Data analysis arise due to the way the data are recorded, maintained, processed and stored. We demonstrate that a hierarchical, multivariate, statistical machine learning algorithm, namely Boosted Re... Challenges in Big Data analysis arise due to the way the data are recorded, maintained, processed and stored. We demonstrate that a hierarchical, multivariate, statistical machine learning algorithm, namely Boosted Regression Tree (BRT) can address Big Data challenges to drive decision making. The challenge of this study is lack of interoperability since the data, a collection of GIS shapefiles, remotely sensed imagery, and aggregated and interpolated spatio-temporal information, are stored in monolithic hardware components. For the modelling process, it was necessary to create one common input file. By merging the data sources together, a structured but noisy input file, showing inconsistencies and redundancies, was created. Here, it is shown that BRT can process different data granularities, heterogeneous data and missingness. In particular, BRT has the advantage of dealing with missing data by default by allowing a split on whether or not a value is missing as well as what the value is. Most importantly, the BRT offers a wide range of possibilities regarding the interpretation of results and variable selection is automatically performed by considering how frequently a variable is used to define a split in the tree. A comparison with two similar regression models (Random Forests and Least Absolute Shrinkage and Selection Operator, LASSO) shows that BRT outperforms these in this instance. BRT can also be a starting point for sophisticated hierarchical modelling in real world scenarios. For example, a single or ensemble approach of BRT could be tested with existing models in order to improve results for a wide range of data-driven decisions and applications. 展开更多
关键词 boosted Regression trees Remotely Sensed DATA BIG DATA MODELLING Approach MISSING DATA
下载PDF
云计算服务中基于BT-TREE的船舶数据完整性保护问题研究
7
作者 袁园 《舰船科学技术》 北大核心 2016年第8X期169-171,共3页
随着云计算存储模式的出现,越来越多的船舶数据被保存到云中,由于本地不再保留数据副本,所以用户无法保证云中数据的完整性。如何保护云计算服务中船舶数据的完整性,成为业界研究的重点。云存储数据验证模型由用户、云服务提供商和第三... 随着云计算存储模式的出现,越来越多的船舶数据被保存到云中,由于本地不再保留数据副本,所以用户无法保证云中数据的完整性。如何保护云计算服务中船舶数据的完整性,成为业界研究的重点。云存储数据验证模型由用户、云服务提供商和第三方验证组成,其中第三方验证负责数据完整性的验证。本文对BT-TREE及其在云计算服务环境下实现船舶数据完整性保护的可行性进行研究,并以此为基础提出动态数据完整性验证模型。 展开更多
关键词 云计算 数据完整性 bt-tree
下载PDF
改进灰狼算法优化GBDT在PM_(2.5)预测中的应用 被引量:2
8
作者 江雨燕 傅杰 +2 位作者 甘如美江 孙雨辰 王付宇 《安全与环境学报》 CAS CSCD 北大核心 2024年第4期1569-1580,共12页
针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局... 针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局搜索能力;利用粒子群算法模拟灰狼种群得出的最佳适应度以用于惩罚项改进灰狼算法中的头狼更新策略。使用改进算法优化的梯度提升树(Gradient Boosting Decision Trees,GBDT)模型对北京市大气污染物监测数据中PM_(2.5)质量浓度进行预测,采用3种评估函数对各模型以及混合模型预测效果得分进行评估。结果显示,本文改进的灰狼算法对梯度提升树的优化效果优于其他算法,均方根误差E RMS为6.65μg/m^(3),平均绝对值误差E MA为3.20μg/m^(3),拟合优度(R^(2))为99%,比传统灰狼算法优化结果的均方根误差减少了19.19μg/m^(3),平均绝对值误差降低了10.03μg/m^(3),拟合优度增加了9百分点;与霍尔顿序列和莱维飞行改进的(Levy Flight-Halton Sequence,LHGWO)相比,改进的灰狼算法预测得分的均方根误差降低了10.39μg/m^(3),平均绝对值误差减小了6.71μg/m^(3),拟合优度提高了5百分点。研究表明了预测模型优化的有效性,为未来城市改善空气质量提供了科学依据和技术支持。 展开更多
关键词 环境学 PM_(2.5)质量浓度预测 改进灰狼算法(GWO) 梯度提升树算法(GBDT) 莱维(Levy)飞行 霍尔顿序列(Halton Sequence) 粒子群算法(PSO)
下载PDF
执行时间预测驱动的工作流作业调度
9
作者 胡亚红 邱圆圆 毛家发 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第5期228-238,共11页
针对工作流作业调度问题,提出使用关键路径法进行工作流的执行时间预测和资源分配。工作流执行时间预测算法使用并行应用有向无环图描述工作流中子作业的执行顺序。基于此顺序,为子作业进行系统资源的逻辑分配。根据子作业的特征和资源... 针对工作流作业调度问题,提出使用关键路径法进行工作流的执行时间预测和资源分配。工作流执行时间预测算法使用并行应用有向无环图描述工作流中子作业的执行顺序。基于此顺序,为子作业进行系统资源的逻辑分配。根据子作业的特征和资源分配信息,使用梯度提升决策树进行子作业执行时间预测,并计算工作流的关键路径。关键路径上所有子作业的完成时间之和即为工作流的执行时间。若预测的工作流执行时间满足用户要求,则根据子作业执行顺序和资源分配方案进行作业调度,执行工作流。对比实验表明,两个工作流的执行时间预测误差分别为5.72%和1.57%。与Spark默认调度算法相比,工作流调度算法将两个工作流的完成时间分别缩短了15.71%和15.44%。 展开更多
关键词 工作流 时间预测 关键路径 调度算法 梯度提升决策树
下载PDF
一种基于贝叶斯优化和XGBoost的膏体流变参数预测模型
10
作者 赵艳伟 胡正祥 +4 位作者 乔登攀 姚晋龙 李广涛 杨天雨 王俊 《有色金属(矿山部分)》 2024年第5期118-128,共11页
探究膏体充填料浆流变特性,对矿山合理布置充填管路,高效进行充填作业有重要意义。目的:将繁琐且影响因素众多的膏体流变参数测量试验与先进的机器学习回归预测模型相结合,实现膏体流变参数的准确预测。方法:利用不同物料配合比条件下共... 探究膏体充填料浆流变特性,对矿山合理布置充填管路,高效进行充填作业有重要意义。目的:将繁琐且影响因素众多的膏体流变参数测量试验与先进的机器学习回归预测模型相结合,实现膏体流变参数的准确预测。方法:利用不同物料配合比条件下共128组膏体流变特性试验数据作为模型数据集,选择极度梯度提升回归树(XGBoost)模型,结合贝叶斯算法(BO)对模型进行超参数寻优设置,建立了多目标参数回归预测模型。结果:研究结果表明:经贝叶斯算法优化后的BO-XGBoost模型较XGBoost模型性能显著提升,决定系数R^(2)提高6%。所构建BO-XGBoost模型真实值与预测值在屈服应力数据集上相对误差维持在0.02水平;黏度数据集维持在0.1水平。结论:BO-XGBoost模型可实现膏体流变参数的高效准确预测,创新性地使用了多目标回归模型,为矿山充填作业设计提供参考,具有一定实际工程应用意义。 展开更多
关键词 膏体充填 流变特性 机器学习 贝叶斯优化 极度提升回归树
下载PDF
基于改进SHKF算法的UWB/IMU组合定位方法
11
作者 黄卫华 梅宇恒 +2 位作者 章政 赵广营 刘思贤 《中国惯性技术学报》 EI CSCD 北大核心 2024年第1期34-41,共8页
针对复杂环境下超宽带(UWB)无线定位系统存在非视距(NLOS)及随机误差的问题,提出一种基于改进Sage-Husa卡尔曼滤波算法(SHKF)的UWB/IMU组合定位方法。首先,设计了一种基于概率密度的提升树,将UWB/IMU特征数据的概率分布密度引入提升树... 针对复杂环境下超宽带(UWB)无线定位系统存在非视距(NLOS)及随机误差的问题,提出一种基于改进Sage-Husa卡尔曼滤波算法(SHKF)的UWB/IMU组合定位方法。首先,设计了一种基于概率密度的提升树,将UWB/IMU特征数据的概率分布密度引入提升树的损失函数中,鉴别出NLOS信号;然后,设计了一种改进SHKF算法,根据新息变化趋势定义自适应因子,实时调整对新息误差修正的策略以调节历史噪声对当前定位的影响,进而提升UWB/IMU组合定位的稳定性和精度。实验结果表明,所提方法将NLOS信号鉴别精度提升至99.12%,定位均方根误差降低至4.30 cm,提升了复杂环境下UWB/IMU组合系统定位精度。 展开更多
关键词 非视距 Sage-Husa卡尔曼滤波 UWB/IMU组合定位 提升树
下载PDF
基于梯度提升回归树的气井油管积液高度预测
12
作者 向华 夏文龙 +3 位作者 刘波涛 孔梦婷 张玉祥 杨浩波 《长江大学学报(自然科学版)》 2024年第5期94-101,共8页
气井油管积液高度预测是气藏开发的重要环节,更是排水采气不可或缺的一部分。气井开采后期,气井底部会出现积液聚集现象,积液过多会造成气井停产,为了避免停产问题,必须对气井油管积液高度进行预测,但传统石油工程模型预测气井油管积液... 气井油管积液高度预测是气藏开发的重要环节,更是排水采气不可或缺的一部分。气井开采后期,气井底部会出现积液聚集现象,积液过多会造成气井停产,为了避免停产问题,必须对气井油管积液高度进行预测,但传统石油工程模型预测气井油管积液高度,存在着具体计算需要大量经验参数等问题。提出一个基于梯度提升回归树模型预测气井油管积液高度的方法,以气井的套压、油压、油管下深、油层中深、日产气、日产水、井口温度7种生产数据为特征,采用集成学习方法,结合多个决策树的预测结果,以迭代逐步改进的方式来提高模型的整体性能,从而精确预测气井油管积液高度。通过与32口井仪器探测实测值、回归决策树和随机森林对比分析,梯度提升回归树模型预测值与实测值相符,预测效果也最好,平均相对误差仅3.87%,调整后的相关系数R2为0.85。梯度提升回归树模型与现有的油管内积液量和环空积液量预测模型相比较,平均相对误差降低了1.9%。 展开更多
关键词 气井积液 预测模型 机器学习 梯度提升回归树
下载PDF
采用VAE-CatBoost的高速公路交通事件检测框架
13
作者 张兵 邹少权 +2 位作者 陆春霖 陈渤文 薛运强 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第8期197-207,共11页
为解决交通事件检测中特征稀少与样本失衡的问题,提出一种基于变分自编码器(VAE)-随机森林(RF)-分类梯度提升树(CatBoost)的交通事件检测框架。依据4条规则构建较为全面的初始特征集。使用VAE进行数据平衡。之后,采用RF算法筛选出最佳... 为解决交通事件检测中特征稀少与样本失衡的问题,提出一种基于变分自编码器(VAE)-随机森林(RF)-分类梯度提升树(CatBoost)的交通事件检测框架。依据4条规则构建较为全面的初始特征集。使用VAE进行数据平衡。之后,采用RF算法筛选出最佳输入特征集。最后,采用CatBoost算法作为分类器检测交通事件。使用真实世界的交通数据集设计实验,并选择6个有效评价指标对实验结果进行评价。结果表明:所提出的交通事件检测框架除误报率之外,各项评价指标均取得最优结果,表明在交通事件检测方面具备优异性能。 展开更多
关键词 交通事件检测 特征扩展 数据平衡 特征选择 梯度提升树
下载PDF
基于GBDT算法的基桩竖向承载力预测方法
14
作者 徐志军 赵世鹏 +2 位作者 王政权 田江涛 宗飞龙 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第2期186-193,共8页
目的为研究支撑-半刚接钢框架结构体系的抗震性能,方法设计了一榀由嵌套式单边螺栓与T型钢构成的半刚性梁柱节点的中心支撑钢框架,并进行了拟静力试验与有限元数值模拟,通过观测整个试验现象,分析了其滞回、承载力、刚度退化、耗能等抗... 目的为研究支撑-半刚接钢框架结构体系的抗震性能,方法设计了一榀由嵌套式单边螺栓与T型钢构成的半刚性梁柱节点的中心支撑钢框架,并进行了拟静力试验与有限元数值模拟,通过观测整个试验现象,分析了其滞回、承载力、刚度退化、耗能等抗震指标。结果结果表明:试件破坏过程明显经历了弹性段、塑性段、破坏段三个阶段,试件破坏模式主要为支撑受压失稳破坏,塑性变形主要累积在支撑体系上,整体呈现延性破坏特征;支撑断裂后,梁柱及T型钢节点无明显塑性变形,钢框架仍具有较高的安全储备,符合“强节点、弱构件”设计原则,表明了结构具有两道抗震防线;结论支撑与半刚接钢框架协同工作使得试件具有较高的抗侧刚度抵抗水平变形,且承载力较高、滞回性能稳定、耗能能力优良;单边螺栓在试验过程中的受力性能较普通高强螺栓并无较大差别,未出现严重的预紧力松弛现象,并能高效的保持螺栓预紧力。通过有限元数值模拟分析可知,减小支撑长细比,虽能有效提高结构的抗震性能,但长细比较小会导致支撑刚度增大,加速其余构件的损坏。故应以考虑结构的延性为前提,降低支撑的长细比,才能有效提高结构的抗震性能。 展开更多
关键词 基桩竖向承载力 梯度提升决策树 预测模型 评价指标 鲁棒性
下载PDF
进港航班滑入时间预测
15
作者 唐小卫 丁叶 +2 位作者 张生润 任思豫 吴佳琦 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第7期2218-2224,共7页
准确预测进港航班滑入时间对合理调配航班保障资源和提高机场场面运行效率具有重要意义,可有效克服各大机场粗放式预测航班进港时刻的不足,为此提出一种基于机器学习模型的滑入时间预测方法。以首都机场为具体研究对象,分析进港航班滑... 准确预测进港航班滑入时间对合理调配航班保障资源和提高机场场面运行效率具有重要意义,可有效克服各大机场粗放式预测航班进港时刻的不足,为此提出一种基于机器学习模型的滑入时间预测方法。以首都机场为具体研究对象,分析进港航班滑入时间的影响因素并构建特征集;将线性回归、K-最近邻、支持向量机、决策树、随机森林和梯度提升回归树6种在滑出时间预测方面得到广泛应用的机器学习模型用于进港航班滑入时间预测。研究结果表明:在误差范围±3 min内6种机器学习模型的预测精度均超过90%,表明特征集的构建和模型的选择是有效的;综合预测性能与模型拟合评估结果,梯度提升回归树模型的预测效果最好;在梯度提升回归树模型上场面流量特征的贡献度最大,新引入的跨区特征对预测模型的贡献度超过了大部分传统特征。 展开更多
关键词 航空运输 机场场面运行 滑行时间预测 机器学习 梯度提升回归树
下载PDF
基于STL-XGBoost-NBEATSx的小时天然气负荷预测
16
作者 邵必林 任萌 田宁 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期170-179,共10页
小时天然气负荷预测受外部特征因素与预测方法的影响,为提高其预测精度并解决其他深度学习类模型或组合模型可解释性差、训练时间过长的问题,在引入“小时影响度”这一新特征因素的同时提出一种基于极端梯度提升树(extreme gradient boo... 小时天然气负荷预测受外部特征因素与预测方法的影响,为提高其预测精度并解决其他深度学习类模型或组合模型可解释性差、训练时间过长的问题,在引入“小时影响度”这一新特征因素的同时提出一种基于极端梯度提升树(extreme gradient boosting tress,XGBoost)模型与可解释性神经网络模型NBEATSx组合预测的方法;以XGBoost模型作为特征筛选器对特征集数据进行筛选,再将筛选降维后的数据集输入到NBEATSx中训练,提高NBEATSx的训练速度与预测精度;将负荷数据与特征数据经STL(seasonal and trend decomposition using Loess)算法分解为趋势分量、季节分量与残差分量,再分别输入到XGBoost中进行预测,减弱原始数据中的噪音影响;将优化后的NBEATSx与XGBoost模型通过方差倒数法进行组合,得出STL-XGBoost-NBEATSx组合模型的预测结果。结果表明:“小时影响度”这一新特征是小时负荷预测的重要影响因素,STL-XGBoost-NBEATSx模型训练速度有所提高,具有良好的可解释性与更高的预测准确性,模型预测结果的平均绝对百分比误差、均方误差、平均绝对误差分别比其余单一模型平均降低54.20%、63.97%、49.72%,比其余组合模型平均降低24.85%、34.39%、23.41%,模型的决定系数为0.935,能够很好地拟合观测数据。 展开更多
关键词 天然气负荷预测 小时影响因素 极端梯度提升树 可解释性 NBEATSx 组合模型
下载PDF
职住地建成环境对轨道交通通勤行为的非线性影响机制研究——以武汉市为例
17
作者 彭建东 张远航 +2 位作者 申犁帆 代琦 杨红 《地理科学》 CSCD 北大核心 2024年第9期1534-1543,共10页
改革开放以来中国大城市快速蔓延导致了职住分离及交通拥堵等问题,倡导轨道交通等绿色交通方式出行成为大城市缓解通勤压力的重要手段。当前研究主要以居住地作为地理背景考察建成环境对轨道交通通勤的作用,但较少探索就业地建成环境的... 改革开放以来中国大城市快速蔓延导致了职住分离及交通拥堵等问题,倡导轨道交通等绿色交通方式出行成为大城市缓解通勤压力的重要手段。当前研究主要以居住地作为地理背景考察建成环境对轨道交通通勤的作用,但较少探索就业地建成环境的影响。本研究以武汉市为例,通过189个轨道站点的刷卡数据识别轨道交通通勤人员并构建通勤出行链,通过梯度提升决策树(GBDT)解析职住地涉及建成环境和轨道站点的30个特征因素对通勤客流量和通勤时间的非线性影响机制。研究发现:①居住地通勤客流量表现为较集中的点状分布,就业地通勤客流量则呈现显著的“中心-外围”结构,职住地两端通勤时间的空间格局均呈中间低、外围高的分布特征;②职住地周边建成环境因素对轨道交通通勤客流量和通勤时间普遍存在非线性影响及阈值效应,整体而言居住地建成环境的相对影响程度高于就业地,但就业地“公司企业数”是影响通勤客流最重要的要素,就业地“与城市中心距离”则是影响通勤时间的首要因素;③职住地周边同一建成环境因素,对于通勤客流量和通勤时间的影响可能截然相反,这与城市轨道交通网络建设和社会实际发展状况相关。研究结果可以更好地理解职住地建成环境与轨道交通通勤行为的关联,有助于促进城市轨道交通和城市职住空间的协调发展。 展开更多
关键词 职住关系 建成环境 城市轨道交通 通勤行为 梯度提升决策树 武汉市
下载PDF
高铁枢纽与城市轨道交通换乘流线仿真与优化
18
作者 程龙 宁哲 +2 位作者 薛小钰 张霁扬 刘志鹏 《北京交通大学学报》 CAS CSCD 北大核心 2024年第4期43-52,共10页
针对高铁枢纽与城市轨道交通换乘流线优化问题,以南京南站作为研究对象,建立全过程仿真模型,识别换乘瓶颈,采用梯度提升决策树法(Gradient Boosting Decision Tree,GBDT)确定参数重要度,提出改善方案.首先,分解换乘过程的行人与设施流线... 针对高铁枢纽与城市轨道交通换乘流线优化问题,以南京南站作为研究对象,建立全过程仿真模型,识别换乘瓶颈,采用梯度提升决策树法(Gradient Boosting Decision Tree,GBDT)确定参数重要度,提出改善方案.首先,分解换乘过程的行人与设施流线,分析高速铁路到达客流与城市轨道交通客流的分布特征.其次,使用AnyLogic软件建立高铁枢纽换乘城市轨道交通的全过程仿真模型,分析现状仿真结果,识别空间瓶颈.然后,设计不同优化类型下的措施参数及调整范围,形成不同参数组合方案.采取梯度提升决策树算法,识别不同措施参数的相对重要度,并据此确定改善措施的优先级.最后,依据措施的优先级,确定不同类型下的优化组合方案,选择机器学习全局可解释性方法对其进行优化效果分析,为不同场景下的服务改善提出建议.研究结果表明:换乘瓶颈主要集中于楼/扶梯通道设施以及闸机、售检票机等服务设施处;乘客换乘城轨的购票比例对平均换乘时间和单位时间最大换乘人数均起到重要影响,对于平均换乘时间,城轨自动售票机数量、购票时间、城轨进站服务时间、城轨进站闸机数量的影响相对较大,对于单位时间最大换乘人数,购票时间与城轨进站闸机服务时间的影响相对较大.为提高高铁枢纽换乘效率,建议推广电子客票和多种支付方式,优化购票及检票设施. 展开更多
关键词 综合交通系统 交通枢纽 换乘全过程优化 AnyLogic仿真 梯度提升决策树
下载PDF
土地利用与城市轨道交通客流的非线性关系
19
作者 魏丽英 石晶晶 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期43-51,共9页
城市轨道交通站点影响范围内土地利用对客流影响具有时空分异特征且存在类型差异,为针对性探讨不同站点两者的复杂非线性关系,提出一种基于土地利用空间分布规律、对站点实际影响范围进行差异化识别的方法;并通过分时段多尺度地理加权回... 城市轨道交通站点影响范围内土地利用对客流影响具有时空分异特征且存在类型差异,为针对性探讨不同站点两者的复杂非线性关系,提出一种基于土地利用空间分布规律、对站点实际影响范围进行差异化识别的方法;并通过分时段多尺度地理加权回归,获取能够表征土地利用对客流影响时空变化特征的站点聚类指标,采用K-means++算法将研究区域内的站点划分为4类;进而基于改进的梯度提升决策树模型分类定量探讨不同类别下土地利用与轨道交通客流的复杂非线性关系。研究表明:通过捕捉不同站点土地利用与客流的时空分异特征对站点进行分类识别,可有效提升两者非线性关系模型的解释度。根据模型输出结果,发现不同类别站点影响轨道交通客流的关键土地利用要素不同,第1类中关键变量为相对重要性分别为61.35%和30.08%的公交站点数量和慢行密度;第4类的情况类似但相对数值有所变化,公交站点数量的相对重要性由61.35%下降至30.31%;建筑密度在第2类中以66.57%的相对重要度占据最大比例;但在第3类中仅占5.59%。此外,不同类别站点影响范围内土地利用与轨道交通客流的关系存在较为显著且各异的阈值效应。研究表明,对于不同类别站点的用地开发应各有侧重,且应结合实际将土地利用设计指标控制在相应的合理范围内。研究为差异化的站点周边土地利用开发策略的制定提供了理论支持和量化指导。 展开更多
关键词 多尺度地理加权回归 土地利用 空间差异性 阈值效应 梯度提升决策树 轨道交通客流
下载PDF
基于BiLSTM-XGBoost混合模型的储层岩性识别
20
作者 杜睿山 黄玉朋 +2 位作者 孟令东 张轶楠 周长坤 《计算机系统应用》 2024年第6期108-116,共9页
储层岩性分类是地质研究基础,基于数据驱动的机器学习模型虽然能较好地识别储层岩性,但由于测井数据是特殊的序列数据,模型很难有效提取数据的空间相关性,造成模型对储层识别仍存在不足.针对此问题,本文结合双向长短期循环神经网络(bidi... 储层岩性分类是地质研究基础,基于数据驱动的机器学习模型虽然能较好地识别储层岩性,但由于测井数据是特殊的序列数据,模型很难有效提取数据的空间相关性,造成模型对储层识别仍存在不足.针对此问题,本文结合双向长短期循环神经网络(bidirectional long short-term memory,BiLSTM)和极端梯度提升决策树(extreme gradient boosting decision tree,XGBoost),提出双向记忆极端梯度提升(BiLSTM-XGBoost,BiXGB)模型预测储层岩性.该模型在传统XGBoost基础上融入了BiLSTM,大大增强了模型对测井数据的特征提取能力.BiXGB模型使用BiLSTM对测井数据进行特征提取,将提取到的特征传递给XGBoost分类模型进行训练和预测.将BiXGB模型应用于储层岩性数据集时,模型预测的总体精度达到了91%.为了进一步验证模型的准确性和稳定性,将模型应用于UCI公开的Occupancy序列数据集,结果显示模型的预测总体精度也高达93%.相较于其他机器学习模型,BiXGB模型能准确地对序列数据进行分类,提高了储层岩性的识别精度,满足了油气勘探的实际需要,为储层岩性识别提供了新的方法. 展开更多
关键词 神经网络 机器学习 测井数据 岩性分类 BiLSTM XGBoost
下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部