Since a thrust of an ion rocket engine is much weaker than the one of a chemical fuel engine, nowadays, ion engines are used mainly in spaces where gravities are very weak. Here, as a powerful plasma rocket to make a ...Since a thrust of an ion rocket engine is much weaker than the one of a chemical fuel engine, nowadays, ion engines are used mainly in spaces where gravities are very weak. Here, as a powerful plasma rocket to make a heavy ship get out from the gravity-sphere of the earth without relying on an atomic power rocket, an ion-velocity booster is investigated. It is a main challenge how to protect the engine wall from the melting due to collisions of ions which grow into high-energy particles.展开更多
A hybrid rocket motor combines components from both solid fuel and liquid fuel rocket motors. The fuel itself is a solid grain, (often paraffin or hydroxyl-terminated polybutadiene, known as HTPB) while the oxidizing ...A hybrid rocket motor combines components from both solid fuel and liquid fuel rocket motors. The fuel itself is a solid grain, (often paraffin or hydroxyl-terminated polybutadiene, known as HTPB) while the oxidizing agent is liquid (often hydrogen peroxide or liquid oxygen). These components are combined in the fuel chamber which doubles as the combustion chamber for the hybrid motor. This review looks at the advances in techniques that have taken place in the development of these motors since 1995. Methods of testing the thrust from rocket motors and of measuring the rocket plume spectroscopically for combustion reaction products have been developed. These assessments allow researchers to more completely understand the effects of additives and physical changes in design, in terms of regression rates and thrust developed. Hybrid rocket motors have been used or tested in many areas of rocketry, including tactical rockets and large launch vehicles. Several additives have shown significant improvements in regression rates and thrust, including Guanidinium azotetrazolate (GAT), and various Aluminum alloys. The most recent discoveries have come from research into nano-particle additives. The nano-particles have been shown to provide enhancements to many parameters of hybrid rocket function, and research into specific areas continues in the sub-field of nano-additives for fuel grains.展开更多
文摘Since a thrust of an ion rocket engine is much weaker than the one of a chemical fuel engine, nowadays, ion engines are used mainly in spaces where gravities are very weak. Here, as a powerful plasma rocket to make a heavy ship get out from the gravity-sphere of the earth without relying on an atomic power rocket, an ion-velocity booster is investigated. It is a main challenge how to protect the engine wall from the melting due to collisions of ions which grow into high-energy particles.
文摘A hybrid rocket motor combines components from both solid fuel and liquid fuel rocket motors. The fuel itself is a solid grain, (often paraffin or hydroxyl-terminated polybutadiene, known as HTPB) while the oxidizing agent is liquid (often hydrogen peroxide or liquid oxygen). These components are combined in the fuel chamber which doubles as the combustion chamber for the hybrid motor. This review looks at the advances in techniques that have taken place in the development of these motors since 1995. Methods of testing the thrust from rocket motors and of measuring the rocket plume spectroscopically for combustion reaction products have been developed. These assessments allow researchers to more completely understand the effects of additives and physical changes in design, in terms of regression rates and thrust developed. Hybrid rocket motors have been used or tested in many areas of rocketry, including tactical rockets and large launch vehicles. Several additives have shown significant improvements in regression rates and thrust, including Guanidinium azotetrazolate (GAT), and various Aluminum alloys. The most recent discoveries have come from research into nano-particle additives. The nano-particles have been shown to provide enhancements to many parameters of hybrid rocket function, and research into specific areas continues in the sub-field of nano-additives for fuel grains.