The high-energy photon source(HEPS)is the first fourth-generation synchrotron light source facility in China.The HEPS injector consists of a linear accelerator(Linac)and a full energy booster.The booster captures the ...The high-energy photon source(HEPS)is the first fourth-generation synchrotron light source facility in China.The HEPS injector consists of a linear accelerator(Linac)and a full energy booster.The booster captures the electron beam from the Linac and increases its energy to the value required for the storage ring.The full-energy beam could be injected to the storage ring directly or after“high-energy accumulation.”On November 17,2023,the key booster parameters successfully reached their corresponding target values.These milestone results were achieved based on numerous contributions,including nearly a decade of physical design,years of equipment development and installation,and months of beam commissioning.As measured at the extraction energy of 6 GeV,the averaged beam current and emittance reached 8.57 mA with 5 bunches and 30.37 nm rad with a single-bunch charge of 5.58 nC,compared with the corresponding target values of 6.6 mA and 35 nm rad,respectively.This paper presents the physical design,equipment development,installation,and commissioning process of the HEPS booster.展开更多
Objective:To elucidate the relationship among knowledge,attitudes,and practices regarding Covid-19 and their relationship with booster vaccination status among women with infertility.Methods:This questionnaire-based c...Objective:To elucidate the relationship among knowledge,attitudes,and practices regarding Covid-19 and their relationship with booster vaccination status among women with infertility.Methods:This questionnaire-based cross-sectional study was performed online and offline among women with infertility who visited an infertility clinic in Jakarta,Indonesia.We assessed the patient’s knowledge,attitudes,and practices regarding Covid-19 and their relationship with booster vaccination status and sociodemographic profile.Results:A total of 178 subjects participated in this study,and most participants(92.6%)had received booster Covid-19 vaccines.From the questionnaire,74.2%had good knowledge,and 99.4%had good attitudes regarding Covid-19;however,only 57.9%of patients had good practices.A weak positive correlation existed between knowledge and attitudes(r=0.11,P=0.13)and a moderate negative correlation between attitudes and practices(r=-0.44,P=0.56).Participants’knowledge about vaccines and infertility was correlated with booster vaccination status(P=0.04).Academic background(P=0.01)and attitudes(P=0.01)were also correlated with booster vaccination status.The significant determinants of hesitance of receiving Covid-19 booster vaccines were high school education or below(OR=0.08,95%CI 0.02-0.36)and poor practices(OR=0.21,95%CI 0.05-0.95).Conclusions:The majority of the participants had received the Covid-19 booster vaccine and had good knowledge and attitudes but poor practices regarding Covid-19.Most participants had poor knowledge about the relationship between infertility and the Covid-19 vaccine.The general population should be more informed and reminded about practices to prevent Covid-19 and the relationship between vaccination and fertility to increase the number of people who receive Covid-19 booster vaccines.展开更多
The role of the rocket attitude control system is to execute the required maneuvers for guidance and ensure the stability of the rocket's flight attitude. Attitude control technology has always been one of the key...The role of the rocket attitude control system is to execute the required maneuvers for guidance and ensure the stability of the rocket's flight attitude. Attitude control technology has always been one of the key technologies for ensuring the success of rocket flights and has been a core topic in carrier rocket technology research. The Gravity-1 solid carrier rocket is the first solid rocket bundled rocket developed by China, adopting a configuration with four boosters and a core stage bundled together. During the actual flight process, the four booster engines are ignited first, and then, in the event of insufficient control force from the boosters, the core stage engine is ignited to participate in control. To address thrust asynchrony during the descent of the four boosters, an Extended State Observer(ESO) is employed in the control scheme for this flight segment. This involves real-time estimation and compensation of attitude parameters during flight, identification of thrust asynchrony among the boosters, and simultaneous determination of whether the core stage engine is ignited to participate in control.Through six degrees of freedom simulation analysis and Y1 flight test validation, this method has been proven to be correct and feasible.展开更多
The analysis of natural vibration characteristics has become one of important steps of the manufacture and dynamic design in the aerospace industry. This paper presents a new scenario called virtual cutting in the con...The analysis of natural vibration characteristics has become one of important steps of the manufacture and dynamic design in the aerospace industry. This paper presents a new scenario called virtual cutting in the context of the transfer matrix method of linear multibody systems closed- loop topology for computing the free vibration characteristics of elastically coupled flexible launch vehicle boosters. In this approach, the coupled system is idealized as a triple-beam system-like structure coupled by linear translational springs, where a non-uniform free-free Euler-Bemoulli beam is used. A large thrust-to-weight ratio leads to large axial accelera- tions that result in an axial inertia load distribution from nose to tail. Consequently, it causes the development of significant compressive forces along the length of the launch vehicle. Therefore, it is important to take into account this effect in the transverse vibration model. This scenario does not need the global dynamics equations of a system, and it has high computational efficiency and low memory requirements. The validity of the presented scenario is achieved through com- parison to other approaches published in the literature.展开更多
A general mathematical model of carrier-based aircraft ski jump take-off is derived based on tensor. The carrier, the aircraft body and the movable parts of the landing gears are treated as independent entities. These...A general mathematical model of carrier-based aircraft ski jump take-off is derived based on tensor. The carrier, the aircraft body and the movable parts of the landing gears are treated as independent entities. These entities are assembled into a multi-rigid-body system with flexible links. Dynamical equations of each entity are derived on the basis of the Newton law and the Euler transformation. Using the invariance property of the tensor, the dynamical and kinematical equations are converted to tensor forms which are invariant under time-dependent coordinate transformations. Then the tensor-formed equations are expressed by the matrix operation. Differential equation group of the matrix form is formulated for the programming. The closure of the model is discussed, and the simulation results are given.展开更多
This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave mo...This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave motions to relatively smooth, fast rotation of an electrical generator. The design of the hydraulic PTO system and its control are critical to maximize the generated power. A time domain simulation study and the laboratory experiment of the full-scale beach test are presented. The results of the simulation and laboratory experiments including their comparison at full-scale are also presented, which have validated the rationality of the design and the reliability of some key components of the prototype of the WEC with an inverse pendulum with the dual-stroke acting hydraulic PTO system.展开更多
Among the wave energy converters (WECs), oscillating buoy is a promising type for wave energy development in offshore area. Conventional single-freedom oscillating buoy WECs with linear power take-off (PTO) system are...Among the wave energy converters (WECs), oscillating buoy is a promising type for wave energy development in offshore area. Conventional single-freedom oscillating buoy WECs with linear power take-off (PTO) system are less efficient under off-resonance conditions and have a narrow power capture bandwidth. Thus, a multi-freedom WEC with a nonlinear PTO system is proposed. This study examines a multi-freedom WEC with 3 degrees of freedom: surge, heave and pitch. Three different PTO systems (velocity-square, snap through, and constant PTO systems) and a traditional linear PTO system are applied to the WEC. A time-domain model is established using linear potential theory and Cummins equation. The kinematic equation is numerically calculated with the fourth-order Runge–Kutta method. The optimal average output power of the PTO systems in all degrees of freedom are obtained and compared. Other parameters of snap through PTO are also discussed in detail. Results show that according to the power capture performance, the order of the PTO systems from the best to worst is snap through PTO, constant PTO, linear PTO and velocity-square PTO. The resonant frequency of the WEC can be adjusted to the incident wave frequency by choosing specific parameters of the snap through PTO. Adding more DOFs can make the WEC get a better power performance in more wave frequencies. Both the above two methods can raise the WEC’s power capture performance significantly.展开更多
Recirculation is prohibited in many coal mining countries because of the fear that the re-use of return air would allow the build-up of air contaminants at the workings. The incorrect design and location of a booster ...Recirculation is prohibited in many coal mining countries because of the fear that the re-use of return air would allow the build-up of air contaminants at the workings. The incorrect design and location of a booster fan in any ventilation network can create unsafe condition due to recirculation. The current approach to investigating recirculation using simulation software requires manual effort which becomes tedious in a complex and a large network. An algorithm-based C++ program was designed to detect the recirculation in a booster fan ventilation networks. This program needed an input file prepared from output file generated by any ventilation simulator. This program created an output file for recirculation. This program demonstrated the strong capability to detect the recirculation in a sample network and a coal mine ventilation network. The outcomes of this program were documented in this paper.展开更多
A novel method for estimating the space range of battery-powered vertical take-off and landing(VTOL) aircraft is presented. The method is based on flight parameter optimization and numerical iteration. Subsystem model...A novel method for estimating the space range of battery-powered vertical take-off and landing(VTOL) aircraft is presented. The method is based on flight parameter optimization and numerical iteration. Subsystem models including required thrust, required power and battery discharge models are presented. The problem to be optimized is formulated, and then case study simulation is conducted using the established method for quantitative analysis. Simulation results show that the space range of battery-powered VTOL aircraft in a vertical plane is an oblate curve, which appears horizontally long but vertically short, and the peak point is not located on the vertical climb path. The method and results are confirmed by parameter analysis and validations.展开更多
The " Sharp Eagle” device is a wave energy converter of a hinged double floating body. The wave-absorbing floating body hinges on the semi-submerged floating body structure. Under the action of wave, the wave-ab...The " Sharp Eagle” device is a wave energy converter of a hinged double floating body. The wave-absorbing floating body hinges on the semi-submerged floating body structure. Under the action of wave, the wave-absorbing floating body rotates around the hinge point, and the wave energy can be converted into kinetic energy. In this paper, the power take-off system of " Sharp Eagle Ⅱ” wave energy converter (the second generation of " Sharp Eagle”) was studied, which adopts the hydraulic type power take-off system. The 0-1 power generation mode was applied in this system to make the " Sharp Eagle Ⅱ” operate under various wave conditions. The principle of power generation was introduced in detail, and the power take-off system was simulated. Three groups of different movement period inputs were used to simulate three kinds of wave conditions, and the simulation results were obtained under three different working conditions. In addition, the prototype of " Sharp Eagle Ⅱ” wave energy converter was tested on land and in real sea conditions. The experimental data have been collected, and the experimental data and simulation results were compared and validated. This work has laid a foundation for the design and application of the following " Sharp Eagle” series of devices.展开更多
Mushrooms are experiencing a kind of renaissance as a part of the contemporary human diet.These valuable organisms are more than food,they fit in perfectly as a novel market group known as nutra-mycoceuticals.Immune-b...Mushrooms are experiencing a kind of renaissance as a part of the contemporary human diet.These valuable organisms are more than food,they fit in perfectly as a novel market group known as nutra-mycoceuticals.Immune-balancing mushroom dietary fibers and secondary metabolites such as polyphenols are the main focus of the healthcare industry.Wellness and cosmetic companies are increasingly using mushroom extracts rich in these ingredients.This review considers the basic molecular immunomodulatory mechanisms of action of the most commonly used mushroom dietary fibers,β-glucans.The literature data on their bioavailability,metabolic transformations,preclinical and human clinical research,and safety are discussed.Immunomodulatory mechanisms of polyphenol ingredients are also considered.These molecules present great potential in the design of the new immunity balancer formulations according to their widespread structural diversity.Finally,we draw attention to the perspectives of modern trends in mushroom nutraceutical and cosmeceutical formulations to strengthen and balance immunity.展开更多
Nowadays, the success of the new technology development and deployment process depends not only on technical, technological solutions, but also on solving the non-technological problems and crossing the societal and p...Nowadays, the success of the new technology development and deployment process depends not only on technical, technological solutions, but also on solving the non-technological problems and crossing the societal and psychological barriers. A large international European projects, GABRIEL1 had developed a maglev assisted aircraft take-off and landing, that was applied to conceptual design of aircraft and required on-board and ground systems, had analysed all impacts (effects of concept deployment on effectiveness, safety, security, noise, emissions) and had demonstrated the safe applicability by concept validation. The applied methodology, used methods and the results of the Gabriel projects had been described and discussed by 55 project deliverables. This paper has a special goal: investigating the problems and barriers of possible implementing of the radically new technology, aircraft MagLev assisted take-off and landing. The study was started by identification and classification of the problems and barriers. After it, the problems were systematically analysed by use of special methodology containing the understanding (description) of the problems, investigation of the possible solutions and discussing their applicability (mainly by use of the Gabriel project results). The paper has three major sections: 1) description of the Gabriel concept and project results, 2) introducing some related thoughts on general aspects of new technology developments, and 3) discussion on the problems and their solutions. The major classes of the problems are the 1) technical, technological problems as developing a radically new solution, landing the undercarriage-less aircraft on the magnetic tracks, 2) stakeholders’ problems as decision makers kicking against supporting the developments of so radically new technologies and 3) society barriers like society worrying on and fear of future passengers on flying by aircraft have not conventional undercarriage systems. The paper will show that these problems have safe and cost-effective solutions.展开更多
The Shanghai Synchrotron Radiation Facility (SSRF) is a low emittance third-generation synchrotron radiation light source under commissioning. The excitation curve calibration for the booster magnets is important to p...The Shanghai Synchrotron Radiation Facility (SSRF) is a low emittance third-generation synchrotron radiation light source under commissioning. The excitation curve calibration for the booster magnets is important to provide the magnet current configurations as reference. Calibration studies give the polynomial coefficients of each type of magnets and provide the magnet current configurations under different beam energies as beam is ramped at speed of 2 Hz. The applications of calibration in booster commissioning which show the accuracy of the magnetic excitation curve calibration are also discussed.展开更多
The most common booster is called input pressure reduced (IPR) booster. However, this type of booster has its own shortages, such as its small output flow, when the boosting ratio is higher, the shortage becomes mor...The most common booster is called input pressure reduced (IPR) booster. However, this type of booster has its own shortages, such as its small output flow, when the boosting ratio is higher, the shortage becomes more distinct. Recent research on pneumatic boosters mainly focused on the factors that influence the characteristics of the boosters, some new kinds of pneumatic booster structures were designed, but the efficiency and output flow of these boosters are still not improved sufficiently. In order to improve the output flow of the pneumatic booster, a new kind of booster, expansion energy used (EEU) booster, is proposed. Non-linear differential equations of the pneumatic booster are set up. By using the software MATLAB/Simulink for simulation, the motion characteristics of the pistons, the characteristics of the output flow of the boosters are obtained for analysis of a principle. The principle, which is used to elevate the output flow of the two kinds of boosters, is that the average pressure of the air in the driving chambers of the EEU booster is higher than that of the IPR booster. The simulation and experimental research of the output flow characteristics are done. The simulation and experimental results are in a good accordance. And the simulation and experimental results show that when the air source pressure and the output pressure are set at 0.6 MPa and 0.8 MPa, respectively, with the increase of the terminal pressure of the air in the driving chamber, the output flow of the IPR booster ascends stably. As the terminal pressure of the air in the driving chamber goes up, the output flow of the EEU booster rises, and later it almost remains constant. In addition, with the same terminal pressure, the output flow of the EEU booster is greater than that of the IPR booster, and the difference decreases when the terminal pressure grows. At last, the output pressure is set at 0.8 MPa, under the optimum work state of the EEU booster, the output flow of the two kinds of boosters all declines with the rise of the boosting ratio. Furthermore, the output flow of the EEU booster is higher than that of IPR booster by 95 L/min approximately. The proposed research lays the foundation for optimistic of the EEU booster.展开更多
A booster fan is an underground main fan which is installed in series with a main surface fan and used to boost the air pressure of the ventilation to overcome mine resistance.Currently booster fans are used in severa...A booster fan is an underground main fan which is installed in series with a main surface fan and used to boost the air pressure of the ventilation to overcome mine resistance.Currently booster fans are used in several major coal mining countries including the United Kingdom,Australia,Poland and China.In the United States booster fans are prohibited in coal mines although they are used in several metal and non-metal mines.A study has been undertaken to examine alternatives for ventilating an underground room and pillar coal mine system.A feasibility study of a hypothetical situation has shown that current ventilation facilities are incapable of fulfilling mine air requirements in the future due to increased seam methane levels.A current ventilation network model has been prepared and projected to a mine five years plan."Ventsim visual" software simulations of different possible ventilation options have been conducted in which varying methane levels are found at working faces.The software can also undertake financial simulations and project present value total costs for the options under study.Several scenarios for improving the ventilation situation such as improving main surface fans,adding intake shafts,adding exhaust shafts and utilizing booster fans have been examined.After taking into account the total capital and operating costs for the five years mine plan the booster fan scenarios are recommended as being the best alternatives for further serious consideration by the mine.The optimum option is a properly sized and installed booster fan system that can be used to create safe work conditions,maintain adequate air quantity with lowest cost,generate a reduction in energy consumption and decrease mine system air leakage.展开更多
Recently, due to the growth of environmental pollution and the increase in the resistance of microorganisms to artificially create chemical drugs, there has been an urgent need for a radical change in the direction of...Recently, due to the growth of environmental pollution and the increase in the resistance of microorganisms to artificially create chemical drugs, there has been an urgent need for a radical change in the direction of the medical preparations development, for changing chemicals to naturally produced ones based on herbal natural remedies. Since homeopathy is a branch of medicine that includes not only herbal preparations, but also chemical ingredients, our newly developed patent—although it belongs to the field of homeopathy—is its offshoot aimed solely at maintaining the body’s strength without harming it, increasing the survival of the body in a polluted environment removing toxins from the body by strengthening adaptive immune mechanisms. Thus, thyme, cumin, oregano, licorice, and other natural resources of the earth, which are the basis of our patent, successfully fight cold and diseases of the upper respiratory tract. The article presents a methodology for the development of a new herbal preparation, its dosage, and use as the main ingredient in a treatment course in infectious diseases.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.12005239).
文摘The high-energy photon source(HEPS)is the first fourth-generation synchrotron light source facility in China.The HEPS injector consists of a linear accelerator(Linac)and a full energy booster.The booster captures the electron beam from the Linac and increases its energy to the value required for the storage ring.The full-energy beam could be injected to the storage ring directly or after“high-energy accumulation.”On November 17,2023,the key booster parameters successfully reached their corresponding target values.These milestone results were achieved based on numerous contributions,including nearly a decade of physical design,years of equipment development and installation,and months of beam commissioning.As measured at the extraction energy of 6 GeV,the averaged beam current and emittance reached 8.57 mA with 5 bunches and 30.37 nm rad with a single-bunch charge of 5.58 nC,compared with the corresponding target values of 6.6 mA and 35 nm rad,respectively.This paper presents the physical design,equipment development,installation,and commissioning process of the HEPS booster.
文摘Objective:To elucidate the relationship among knowledge,attitudes,and practices regarding Covid-19 and their relationship with booster vaccination status among women with infertility.Methods:This questionnaire-based cross-sectional study was performed online and offline among women with infertility who visited an infertility clinic in Jakarta,Indonesia.We assessed the patient’s knowledge,attitudes,and practices regarding Covid-19 and their relationship with booster vaccination status and sociodemographic profile.Results:A total of 178 subjects participated in this study,and most participants(92.6%)had received booster Covid-19 vaccines.From the questionnaire,74.2%had good knowledge,and 99.4%had good attitudes regarding Covid-19;however,only 57.9%of patients had good practices.A weak positive correlation existed between knowledge and attitudes(r=0.11,P=0.13)and a moderate negative correlation between attitudes and practices(r=-0.44,P=0.56).Participants’knowledge about vaccines and infertility was correlated with booster vaccination status(P=0.04).Academic background(P=0.01)and attitudes(P=0.01)were also correlated with booster vaccination status.The significant determinants of hesitance of receiving Covid-19 booster vaccines were high school education or below(OR=0.08,95%CI 0.02-0.36)and poor practices(OR=0.21,95%CI 0.05-0.95).Conclusions:The majority of the participants had received the Covid-19 booster vaccine and had good knowledge and attitudes but poor practices regarding Covid-19.Most participants had poor knowledge about the relationship between infertility and the Covid-19 vaccine.The general population should be more informed and reminded about practices to prevent Covid-19 and the relationship between vaccination and fertility to increase the number of people who receive Covid-19 booster vaccines.
文摘The role of the rocket attitude control system is to execute the required maneuvers for guidance and ensure the stability of the rocket's flight attitude. Attitude control technology has always been one of the key technologies for ensuring the success of rocket flights and has been a core topic in carrier rocket technology research. The Gravity-1 solid carrier rocket is the first solid rocket bundled rocket developed by China, adopting a configuration with four boosters and a core stage bundled together. During the actual flight process, the four booster engines are ignited first, and then, in the event of insufficient control force from the boosters, the core stage engine is ignited to participate in control. To address thrust asynchrony during the descent of the four boosters, an Extended State Observer(ESO) is employed in the control scheme for this flight segment. This involves real-time estimation and compensation of attitude parameters during flight, identification of thrust asynchrony among the boosters, and simultaneous determination of whether the core stage engine is ignited to participate in control.Through six degrees of freedom simulation analysis and Y1 flight test validation, this method has been proven to be correct and feasible.
基金supported by the Research Fund for the Doctoral Program of Higher Education of China(Grants 20113219110025,20133219110037)the National Natural Science Foundation of China(Grants 11102089,61304137)the Program for New Century Excellent Talents in University(NCET-10-0075)
文摘The analysis of natural vibration characteristics has become one of important steps of the manufacture and dynamic design in the aerospace industry. This paper presents a new scenario called virtual cutting in the context of the transfer matrix method of linear multibody systems closed- loop topology for computing the free vibration characteristics of elastically coupled flexible launch vehicle boosters. In this approach, the coupled system is idealized as a triple-beam system-like structure coupled by linear translational springs, where a non-uniform free-free Euler-Bemoulli beam is used. A large thrust-to-weight ratio leads to large axial accelera- tions that result in an axial inertia load distribution from nose to tail. Consequently, it causes the development of significant compressive forces along the length of the launch vehicle. Therefore, it is important to take into account this effect in the transverse vibration model. This scenario does not need the global dynamics equations of a system, and it has high computational efficiency and low memory requirements. The validity of the presented scenario is achieved through com- parison to other approaches published in the literature.
文摘A general mathematical model of carrier-based aircraft ski jump take-off is derived based on tensor. The carrier, the aircraft body and the movable parts of the landing gears are treated as independent entities. These entities are assembled into a multi-rigid-body system with flexible links. Dynamical equations of each entity are derived on the basis of the Newton law and the Euler transformation. Using the invariance property of the tensor, the dynamical and kinematical equations are converted to tensor forms which are invariant under time-dependent coordinate transformations. Then the tensor-formed equations are expressed by the matrix operation. Differential equation group of the matrix form is formulated for the programming. The closure of the model is discussed, and the simulation results are given.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51205346 and 41206074)the National High Technology Research and Development Program of China(863 Program+3 种基金Grant No.2011AA050201)Science Fund for Creative Research Groups of National Natural Science Foundation of China(Grant No.51221004)Zhejiang Provincial Natural Science Foundation of China(Grant No.LY12E05017)Open Foundation of the State Key Laboratory of Fluid Power Transmission and Control(Grant No.GZKF-201311)
文摘This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave motions to relatively smooth, fast rotation of an electrical generator. The design of the hydraulic PTO system and its control are critical to maximize the generated power. A time domain simulation study and the laboratory experiment of the full-scale beach test are presented. The results of the simulation and laboratory experiments including their comparison at full-scale are also presented, which have validated the rationality of the design and the reliability of some key components of the prototype of the WEC with an inverse pendulum with the dual-stroke acting hydraulic PTO system.
基金financially supported by the Shandong Provincial Natural Science Key Basic Program(Grant No.ZR2017ZA0202)the Qingdao Municipal Science&Technology Program(Grant No.15-8-3-7-jch)Special Project for Marine Renewable Energy(Grant No.GHME2016YY02)
文摘Among the wave energy converters (WECs), oscillating buoy is a promising type for wave energy development in offshore area. Conventional single-freedom oscillating buoy WECs with linear power take-off (PTO) system are less efficient under off-resonance conditions and have a narrow power capture bandwidth. Thus, a multi-freedom WEC with a nonlinear PTO system is proposed. This study examines a multi-freedom WEC with 3 degrees of freedom: surge, heave and pitch. Three different PTO systems (velocity-square, snap through, and constant PTO systems) and a traditional linear PTO system are applied to the WEC. A time-domain model is established using linear potential theory and Cummins equation. The kinematic equation is numerically calculated with the fourth-order Runge–Kutta method. The optimal average output power of the PTO systems in all degrees of freedom are obtained and compared. Other parameters of snap through PTO are also discussed in detail. Results show that according to the power capture performance, the order of the PTO systems from the best to worst is snap through PTO, constant PTO, linear PTO and velocity-square PTO. The resonant frequency of the WEC can be adjusted to the incident wave frequency by choosing specific parameters of the snap through PTO. Adding more DOFs can make the WEC get a better power performance in more wave frequencies. Both the above two methods can raise the WEC’s power capture performance significantly.
基金the National Institute for Occupational Safety and Health of USA for providing financial support for this project
文摘Recirculation is prohibited in many coal mining countries because of the fear that the re-use of return air would allow the build-up of air contaminants at the workings. The incorrect design and location of a booster fan in any ventilation network can create unsafe condition due to recirculation. The current approach to investigating recirculation using simulation software requires manual effort which becomes tedious in a complex and a large network. An algorithm-based C++ program was designed to detect the recirculation in a booster fan ventilation networks. This program needed an input file prepared from output file generated by any ventilation simulator. This program created an output file for recirculation. This program demonstrated the strong capability to detect the recirculation in a sample network and a coal mine ventilation network. The outcomes of this program were documented in this paper.
文摘A novel method for estimating the space range of battery-powered vertical take-off and landing(VTOL) aircraft is presented. The method is based on flight parameter optimization and numerical iteration. Subsystem models including required thrust, required power and battery discharge models are presented. The problem to be optimized is formulated, and then case study simulation is conducted using the established method for quantitative analysis. Simulation results show that the space range of battery-powered VTOL aircraft in a vertical plane is an oblate curve, which appears horizontally long but vertically short, and the peak point is not located on the vertical climb path. The method and results are confirmed by parameter analysis and validations.
基金financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA13040202)the Special Funding Program for Marine Renewable Energy of the State Oceanic Administration(Grant No.GHME2017SF01)
文摘The " Sharp Eagle” device is a wave energy converter of a hinged double floating body. The wave-absorbing floating body hinges on the semi-submerged floating body structure. Under the action of wave, the wave-absorbing floating body rotates around the hinge point, and the wave energy can be converted into kinetic energy. In this paper, the power take-off system of " Sharp Eagle Ⅱ” wave energy converter (the second generation of " Sharp Eagle”) was studied, which adopts the hydraulic type power take-off system. The 0-1 power generation mode was applied in this system to make the " Sharp Eagle Ⅱ” operate under various wave conditions. The principle of power generation was introduced in detail, and the power take-off system was simulated. Three groups of different movement period inputs were used to simulate three kinds of wave conditions, and the simulation results were obtained under three different working conditions. In addition, the prototype of " Sharp Eagle Ⅱ” wave energy converter was tested on land and in real sea conditions. The experimental data have been collected, and the experimental data and simulation results were compared and validated. This work has laid a foundation for the design and application of the following " Sharp Eagle” series of devices.
基金supported by the Science Fund of the Republic of Serbia,#Grant No:7748088。
文摘Mushrooms are experiencing a kind of renaissance as a part of the contemporary human diet.These valuable organisms are more than food,they fit in perfectly as a novel market group known as nutra-mycoceuticals.Immune-balancing mushroom dietary fibers and secondary metabolites such as polyphenols are the main focus of the healthcare industry.Wellness and cosmetic companies are increasingly using mushroom extracts rich in these ingredients.This review considers the basic molecular immunomodulatory mechanisms of action of the most commonly used mushroom dietary fibers,β-glucans.The literature data on their bioavailability,metabolic transformations,preclinical and human clinical research,and safety are discussed.Immunomodulatory mechanisms of polyphenol ingredients are also considered.These molecules present great potential in the design of the new immunity balancer formulations according to their widespread structural diversity.Finally,we draw attention to the perspectives of modern trends in mushroom nutraceutical and cosmeceutical formulations to strengthen and balance immunity.
文摘Nowadays, the success of the new technology development and deployment process depends not only on technical, technological solutions, but also on solving the non-technological problems and crossing the societal and psychological barriers. A large international European projects, GABRIEL1 had developed a maglev assisted aircraft take-off and landing, that was applied to conceptual design of aircraft and required on-board and ground systems, had analysed all impacts (effects of concept deployment on effectiveness, safety, security, noise, emissions) and had demonstrated the safe applicability by concept validation. The applied methodology, used methods and the results of the Gabriel projects had been described and discussed by 55 project deliverables. This paper has a special goal: investigating the problems and barriers of possible implementing of the radically new technology, aircraft MagLev assisted take-off and landing. The study was started by identification and classification of the problems and barriers. After it, the problems were systematically analysed by use of special methodology containing the understanding (description) of the problems, investigation of the possible solutions and discussing their applicability (mainly by use of the Gabriel project results). The paper has three major sections: 1) description of the Gabriel concept and project results, 2) introducing some related thoughts on general aspects of new technology developments, and 3) discussion on the problems and their solutions. The major classes of the problems are the 1) technical, technological problems as developing a radically new solution, landing the undercarriage-less aircraft on the magnetic tracks, 2) stakeholders’ problems as decision makers kicking against supporting the developments of so radically new technologies and 3) society barriers like society worrying on and fear of future passengers on flying by aircraft have not conventional undercarriage systems. The paper will show that these problems have safe and cost-effective solutions.
文摘The Shanghai Synchrotron Radiation Facility (SSRF) is a low emittance third-generation synchrotron radiation light source under commissioning. The excitation curve calibration for the booster magnets is important to provide the magnet current configurations as reference. Calibration studies give the polynomial coefficients of each type of magnets and provide the magnet current configurations under different beam energies as beam is ramped at speed of 2 Hz. The applications of calibration in booster commissioning which show the accuracy of the magnetic excitation curve calibration are also discussed.
文摘The most common booster is called input pressure reduced (IPR) booster. However, this type of booster has its own shortages, such as its small output flow, when the boosting ratio is higher, the shortage becomes more distinct. Recent research on pneumatic boosters mainly focused on the factors that influence the characteristics of the boosters, some new kinds of pneumatic booster structures were designed, but the efficiency and output flow of these boosters are still not improved sufficiently. In order to improve the output flow of the pneumatic booster, a new kind of booster, expansion energy used (EEU) booster, is proposed. Non-linear differential equations of the pneumatic booster are set up. By using the software MATLAB/Simulink for simulation, the motion characteristics of the pistons, the characteristics of the output flow of the boosters are obtained for analysis of a principle. The principle, which is used to elevate the output flow of the two kinds of boosters, is that the average pressure of the air in the driving chambers of the EEU booster is higher than that of the IPR booster. The simulation and experimental research of the output flow characteristics are done. The simulation and experimental results are in a good accordance. And the simulation and experimental results show that when the air source pressure and the output pressure are set at 0.6 MPa and 0.8 MPa, respectively, with the increase of the terminal pressure of the air in the driving chamber, the output flow of the IPR booster ascends stably. As the terminal pressure of the air in the driving chamber goes up, the output flow of the EEU booster rises, and later it almost remains constant. In addition, with the same terminal pressure, the output flow of the EEU booster is greater than that of the IPR booster, and the difference decreases when the terminal pressure grows. At last, the output pressure is set at 0.8 MPa, under the optimum work state of the EEU booster, the output flow of the two kinds of boosters all declines with the rise of the boosting ratio. Furthermore, the output flow of the EEU booster is higher than that of IPR booster by 95 L/min approximately. The proposed research lays the foundation for optimistic of the EEU booster.
基金Supported by National Institute for Occupational Safety and Health (NIOSH) of USA(200-2009-30328)
文摘A booster fan is an underground main fan which is installed in series with a main surface fan and used to boost the air pressure of the ventilation to overcome mine resistance.Currently booster fans are used in several major coal mining countries including the United Kingdom,Australia,Poland and China.In the United States booster fans are prohibited in coal mines although they are used in several metal and non-metal mines.A study has been undertaken to examine alternatives for ventilating an underground room and pillar coal mine system.A feasibility study of a hypothetical situation has shown that current ventilation facilities are incapable of fulfilling mine air requirements in the future due to increased seam methane levels.A current ventilation network model has been prepared and projected to a mine five years plan."Ventsim visual" software simulations of different possible ventilation options have been conducted in which varying methane levels are found at working faces.The software can also undertake financial simulations and project present value total costs for the options under study.Several scenarios for improving the ventilation situation such as improving main surface fans,adding intake shafts,adding exhaust shafts and utilizing booster fans have been examined.After taking into account the total capital and operating costs for the five years mine plan the booster fan scenarios are recommended as being the best alternatives for further serious consideration by the mine.The optimum option is a properly sized and installed booster fan system that can be used to create safe work conditions,maintain adequate air quantity with lowest cost,generate a reduction in energy consumption and decrease mine system air leakage.
文摘Recently, due to the growth of environmental pollution and the increase in the resistance of microorganisms to artificially create chemical drugs, there has been an urgent need for a radical change in the direction of the medical preparations development, for changing chemicals to naturally produced ones based on herbal natural remedies. Since homeopathy is a branch of medicine that includes not only herbal preparations, but also chemical ingredients, our newly developed patent—although it belongs to the field of homeopathy—is its offshoot aimed solely at maintaining the body’s strength without harming it, increasing the survival of the body in a polluted environment removing toxins from the body by strengthening adaptive immune mechanisms. Thus, thyme, cumin, oregano, licorice, and other natural resources of the earth, which are the basis of our patent, successfully fight cold and diseases of the upper respiratory tract. The article presents a methodology for the development of a new herbal preparation, its dosage, and use as the main ingredient in a treatment course in infectious diseases.