Boosting algorithms have been widely utilized in the development of landslide susceptibility mapping(LSM)studies.However,these algorithms possess distinct computational strategies and hyperparameters,making it challen...Boosting algorithms have been widely utilized in the development of landslide susceptibility mapping(LSM)studies.However,these algorithms possess distinct computational strategies and hyperparameters,making it challenging to propose an ideal LSM model.To investigate the impact of different boosting algorithms and hyperparameter optimization algorithms on LSM,this study constructed a geospatial database comprising 12 conditioning factors,such as elevation,stratum,and annual average rainfall.The XGBoost(XGB),LightGBM(LGBM),and CatBoost(CB)algorithms were employed to construct the LSM model.Furthermore,the Bayesian optimization(BO),particle swarm optimization(PSO),and Hyperband optimization(HO)algorithms were applied to optimizing the LSM model.The boosting algorithms exhibited varying performances,with CB demonstrating the highest precision,followed by LGBM,and XGB showing poorer precision.Additionally,the hyperparameter optimization algorithms displayed different performances,with HO outperforming PSO and BO showing poorer performance.The HO-CB model achieved the highest precision,boasting an accuracy of 0.764,an F1-score of 0.777,an area under the curve(AUC)value of 0.837 for the training set,and an AUC value of 0.863 for the test set.The model was interpreted using SHapley Additive exPlanations(SHAP),revealing that slope,curvature,topographic wetness index(TWI),degree of relief,and elevation significantly influenced landslides in the study area.This study offers a scientific reference for LSM and disaster prevention research.This study examines the utilization of various boosting algorithms and hyperparameter optimization algorithms in Wanzhou District.It proposes the HO-CB-SHAP framework as an effective approach to accurately forecast landslide disasters and interpret LSM models.However,limitations exist concerning the generalizability of the model and the data processing,which require further exploration in subsequent studies.展开更多
Brain tumors pose a significant threat to human lives and have gained increasing attention as the tenth leading cause of global mortality.This study addresses the pressing issue of brain tumor classification using Mag...Brain tumors pose a significant threat to human lives and have gained increasing attention as the tenth leading cause of global mortality.This study addresses the pressing issue of brain tumor classification using Magnetic resonance imaging(MRI).It focuses on distinguishing between Low-Grade Gliomas(LGG)and High-Grade Gliomas(HGG).LGGs are benign and typically manageable with surgical resection,while HGGs are malignant and more aggressive.The research introduces an innovative custom convolutional neural network(CNN)model,Glioma-CNN.GliomaCNN stands out as a lightweight CNN model compared to its predecessors.The research utilized the BraTS 2020 dataset for its experiments.Integrated with the gradient-boosting algorithm,GliomaCNN has achieved an impressive accuracy of 99.1569%.The model’s interpretability is ensured through SHapley Additive exPlanations(SHAP)and Gradient-weighted Class Activation Mapping(Grad-CAM++).They provide insights into critical decision-making regions for classification outcomes.Despite challenges in identifying tumors in images without visible signs,the model demonstrates remarkable performance in this critical medical application,offering a promising tool for accurate brain tumor diagnosis which paves the way for enhanced early detection and treatment of brain tumors.展开更多
A revised support vector regression (SVR) ensemble model based on boosting algorithm (SVR-Boosting) is presented in this paper for electricity price forecasting in electric power market. In the light of characteristic...A revised support vector regression (SVR) ensemble model based on boosting algorithm (SVR-Boosting) is presented in this paper for electricity price forecasting in electric power market. In the light of characteristics of electricity price sequence, a new triangular-shaped 为oss function is constructed in the training of the forecasting model to inhibit the learning from abnormal data in electricity price sequence. The results from actual data indicate that, compared with the single support vector regression model, the proposed SVR-Boosting ensemble model is able to enhance the stability of the model output remarkably, acquire higher predicting accuracy, and possess comparatively satisfactory generalization capability.展开更多
In this paper, we present a strategy to implement multi-pose face detection in compressed domain. The strategy extracts firstly feature vectors from DCT domain, and then uses a boosting algorithm to build classificrs ...In this paper, we present a strategy to implement multi-pose face detection in compressed domain. The strategy extracts firstly feature vectors from DCT domain, and then uses a boosting algorithm to build classificrs to distinguish faces and non-faces. Moreover, to get more accurate results of the face detection, we present a kernel function and a linear combination to build incrementally the strong classifiers based on the weak classifiers. Through comparing and analyzing results of some experiments on the synthetic data and the natural data, we can get more satisfied results by the strong classifiers than by the weak classifies. Key words weak classifier - boosting algorithm - face detection - compressed domain CLC number TP 391. 41 Foundation item: Supported by the National 863 Program (2002 AA11101) and Open Fund of State Technology Center of Multimedia Software Engineering (621-273128)Biography: CHEN Lei(1978-), male, Master, research direction: image process, image recognition and AI.展开更多
The prediction of particles less than 2.5 micrometers in diameter(PM2.5)in fog and haze has been paid more and more attention,but the prediction accuracy of the results is not ideal.Haze prediction algorithms based on...The prediction of particles less than 2.5 micrometers in diameter(PM2.5)in fog and haze has been paid more and more attention,but the prediction accuracy of the results is not ideal.Haze prediction algorithms based on traditional numerical and statistical prediction have poor effects on nonlinear data prediction of haze.In order to improve the effects of prediction,this paper proposes a haze feature extraction and pollution level identification pre-warning algorithm based on feature selection and integrated learning.Minimum Redundancy Maximum Relevance method is used to extract low-level features of haze,and deep confidence network is utilized to extract high-level features.eXtreme Gradient Boosting algorithm is adopted to fuse low-level and high-level features,as well as predict haze.Establish PM2.5 concentration pollution grade classification index,and grade the forecast data.The expert experience knowledge is utilized to assist the optimization of the pre-warning results.The experiment results show the presented algorithm can get better prediction effects than the results of Support Vector Machine(SVM)and Back Propagation(BP)widely used at present,the accuracy has greatly improved compared with SVM and BP.展开更多
Grain yield security is a basic national policy of China,and changes in grain yield are influenced by a variety of factors,which often have a complex,non-linear relationship with each other.Therefore,this paper propos...Grain yield security is a basic national policy of China,and changes in grain yield are influenced by a variety of factors,which often have a complex,non-linear relationship with each other.Therefore,this paper proposes a Grey Relational Analysis-Adaptive Boosting-Support Vector Regression(GRA-AdaBoost-SVR)model,which can ensure the prediction accuracy of the model under small sample,improve the generalization ability,and enhance the prediction accuracy.SVR allows mapping to high-dimensional spaces using kernel functions,good for solving nonlinear problems.Grain yield datasets generally have small sample sizes and many features,making SVR a promising application for grain yield datasets.However,the SVR algorithm’s own problems with the selection of parameters and kernel functions make the model less generalizable.Therefore,the Adaptive Boosting(AdaBoost)algorithm can be used.Using the SVR algorithm as a training method for base learners in the AdaBoost algorithm.Effectively address the generalization capability problem in SVR algorithms.In addition,to address the problem of sensitivity to anomalous samples in the AdaBoost algorithm,the GRA method is used to extract influence factors with higher correlation and reduce the number of anomalous samples.Finally,applying the GRA-AdaBoost-SVR model to grain yield forecasting in China.Experiments were conducted to verify the correctness of the model and to compare the effectiveness of several traditional models applied to the grain yield data.The results show that the GRA-AdaBoost-SVR algorithm improves the prediction accuracy,the model is smoother,and confirms that the model possesses better prediction performance and better generalization ability.展开更多
Day-ahead wind power forecasting plays an essential role in the safe and economic use of wind energy,the comprehending-intrinsic complexity of the behavior of wind is considered as the main challenge faced in improvin...Day-ahead wind power forecasting plays an essential role in the safe and economic use of wind energy,the comprehending-intrinsic complexity of the behavior of wind is considered as the main challenge faced in improving forecasting accuracy.To improve forecasting accuracy,this paper focuses on two aspects:①proposing a novel hybrid method using Boosting algorithm and a multistep forecast approach to improve the forecasting capacity of traditional ARMA model;②calculating the existing error bounds of the proposed method.To validate the effectiveness of the novel hybrid method,one-year period of real data are used for test,which were collected from three operating wind farms in the east coast of Jiangsu Province,China.Meanwhile conventional ARMA model and persistence model are both used as benchmarks with which the proposed method is compared.Test results show that the proposed method achieves a more accurate forecast.展开更多
This study explores the influence of social media on stock volatility and builds a feature model with an intelligence algorithm using social media data from Xueqiu.com in China, Sina Finance and Economics, Sina Microb...This study explores the influence of social media on stock volatility and builds a feature model with an intelligence algorithm using social media data from Xueqiu.com in China, Sina Finance and Economics, Sina Microblog, and Oriental Fortune. We find that the effect of social factors, such as increased attention to a stock's volatility, is more significant than public sentiment. A prediction model is introduced based on social factors and public sentiment to predict stock volatility. Our findings indicate that the influence of social media data on the next day's volatility is more significant but declines over time.展开更多
基金funded by the Natural Science Foundation of Chongqing(Grants No.CSTB2022NSCQ-MSX0594)the Humanities and Social Sciences Research Project of the Ministry of Education(Grants No.16YJCZH061).
文摘Boosting algorithms have been widely utilized in the development of landslide susceptibility mapping(LSM)studies.However,these algorithms possess distinct computational strategies and hyperparameters,making it challenging to propose an ideal LSM model.To investigate the impact of different boosting algorithms and hyperparameter optimization algorithms on LSM,this study constructed a geospatial database comprising 12 conditioning factors,such as elevation,stratum,and annual average rainfall.The XGBoost(XGB),LightGBM(LGBM),and CatBoost(CB)algorithms were employed to construct the LSM model.Furthermore,the Bayesian optimization(BO),particle swarm optimization(PSO),and Hyperband optimization(HO)algorithms were applied to optimizing the LSM model.The boosting algorithms exhibited varying performances,with CB demonstrating the highest precision,followed by LGBM,and XGB showing poorer precision.Additionally,the hyperparameter optimization algorithms displayed different performances,with HO outperforming PSO and BO showing poorer performance.The HO-CB model achieved the highest precision,boasting an accuracy of 0.764,an F1-score of 0.777,an area under the curve(AUC)value of 0.837 for the training set,and an AUC value of 0.863 for the test set.The model was interpreted using SHapley Additive exPlanations(SHAP),revealing that slope,curvature,topographic wetness index(TWI),degree of relief,and elevation significantly influenced landslides in the study area.This study offers a scientific reference for LSM and disaster prevention research.This study examines the utilization of various boosting algorithms and hyperparameter optimization algorithms in Wanzhou District.It proposes the HO-CB-SHAP framework as an effective approach to accurately forecast landslide disasters and interpret LSM models.However,limitations exist concerning the generalizability of the model and the data processing,which require further exploration in subsequent studies.
基金This research is funded by the Researchers Supporting Project Number(RSPD2024R1027),King Saud University,Riyadh,Saudi Arabia.
文摘Brain tumors pose a significant threat to human lives and have gained increasing attention as the tenth leading cause of global mortality.This study addresses the pressing issue of brain tumor classification using Magnetic resonance imaging(MRI).It focuses on distinguishing between Low-Grade Gliomas(LGG)and High-Grade Gliomas(HGG).LGGs are benign and typically manageable with surgical resection,while HGGs are malignant and more aggressive.The research introduces an innovative custom convolutional neural network(CNN)model,Glioma-CNN.GliomaCNN stands out as a lightweight CNN model compared to its predecessors.The research utilized the BraTS 2020 dataset for its experiments.Integrated with the gradient-boosting algorithm,GliomaCNN has achieved an impressive accuracy of 99.1569%.The model’s interpretability is ensured through SHapley Additive exPlanations(SHAP)and Gradient-weighted Class Activation Mapping(Grad-CAM++).They provide insights into critical decision-making regions for classification outcomes.Despite challenges in identifying tumors in images without visible signs,the model demonstrates remarkable performance in this critical medical application,offering a promising tool for accurate brain tumor diagnosis which paves the way for enhanced early detection and treatment of brain tumors.
基金Sponsored by the National Outstanding Young Investigator Grant (Grant No6970025)the Key Project of National Natural Science Foundation (GrantNo59937150)+2 种基金863 High Tech Development Plan (Grant No2001AA413910)of China and the Key Project of National Natural Science Foundation(Grant No59937150)the Project of National Natural Science Foundation (Grant No60274054)
文摘A revised support vector regression (SVR) ensemble model based on boosting algorithm (SVR-Boosting) is presented in this paper for electricity price forecasting in electric power market. In the light of characteristics of electricity price sequence, a new triangular-shaped 为oss function is constructed in the training of the forecasting model to inhibit the learning from abnormal data in electricity price sequence. The results from actual data indicate that, compared with the single support vector regression model, the proposed SVR-Boosting ensemble model is able to enhance the stability of the model output remarkably, acquire higher predicting accuracy, and possess comparatively satisfactory generalization capability.
文摘In this paper, we present a strategy to implement multi-pose face detection in compressed domain. The strategy extracts firstly feature vectors from DCT domain, and then uses a boosting algorithm to build classificrs to distinguish faces and non-faces. Moreover, to get more accurate results of the face detection, we present a kernel function and a linear combination to build incrementally the strong classifiers based on the weak classifiers. Through comparing and analyzing results of some experiments on the synthetic data and the natural data, we can get more satisfied results by the strong classifiers than by the weak classifies. Key words weak classifier - boosting algorithm - face detection - compressed domain CLC number TP 391. 41 Foundation item: Supported by the National 863 Program (2002 AA11101) and Open Fund of State Technology Center of Multimedia Software Engineering (621-273128)Biography: CHEN Lei(1978-), male, Master, research direction: image process, image recognition and AI.
基金The work was financially supported by National Natural Science Fund of China,specific grant numbers were 61371143 and 61662033initials of authors who received the grants were respectively Z.YM,H.L,and the URLs to sponsors’websites was http://www.nsfc.gov.cn/.This paper was supported by National Natural Science Fund of China(Grant Nos.61371143,61662033).
文摘The prediction of particles less than 2.5 micrometers in diameter(PM2.5)in fog and haze has been paid more and more attention,but the prediction accuracy of the results is not ideal.Haze prediction algorithms based on traditional numerical and statistical prediction have poor effects on nonlinear data prediction of haze.In order to improve the effects of prediction,this paper proposes a haze feature extraction and pollution level identification pre-warning algorithm based on feature selection and integrated learning.Minimum Redundancy Maximum Relevance method is used to extract low-level features of haze,and deep confidence network is utilized to extract high-level features.eXtreme Gradient Boosting algorithm is adopted to fuse low-level and high-level features,as well as predict haze.Establish PM2.5 concentration pollution grade classification index,and grade the forecast data.The expert experience knowledge is utilized to assist the optimization of the pre-warning results.The experiment results show the presented algorithm can get better prediction effects than the results of Support Vector Machine(SVM)and Back Propagation(BP)widely used at present,the accuracy has greatly improved compared with SVM and BP.
基金This work was support in part by Research on Key Technologies of Intelligent Decision-Making for Food Big Data under Grant 2018A01038in part by the National Science Fund for Youth of Hubei Province of China under Grant 2018CFB408+2 种基金in part by the Natural Science Foundation of Hubei Province of China under Grant 2015CFA061in part by the National Nature Science Foundation of China under Grant 61272278in part by the Major Technical Innovation Projects of Hubei Province under Grant 2018ABA099。
文摘Grain yield security is a basic national policy of China,and changes in grain yield are influenced by a variety of factors,which often have a complex,non-linear relationship with each other.Therefore,this paper proposes a Grey Relational Analysis-Adaptive Boosting-Support Vector Regression(GRA-AdaBoost-SVR)model,which can ensure the prediction accuracy of the model under small sample,improve the generalization ability,and enhance the prediction accuracy.SVR allows mapping to high-dimensional spaces using kernel functions,good for solving nonlinear problems.Grain yield datasets generally have small sample sizes and many features,making SVR a promising application for grain yield datasets.However,the SVR algorithm’s own problems with the selection of parameters and kernel functions make the model less generalizable.Therefore,the Adaptive Boosting(AdaBoost)algorithm can be used.Using the SVR algorithm as a training method for base learners in the AdaBoost algorithm.Effectively address the generalization capability problem in SVR algorithms.In addition,to address the problem of sensitivity to anomalous samples in the AdaBoost algorithm,the GRA method is used to extract influence factors with higher correlation and reduce the number of anomalous samples.Finally,applying the GRA-AdaBoost-SVR model to grain yield forecasting in China.Experiments were conducted to verify the correctness of the model and to compare the effectiveness of several traditional models applied to the grain yield data.The results show that the GRA-AdaBoost-SVR algorithm improves the prediction accuracy,the model is smoother,and confirms that the model possesses better prediction performance and better generalization ability.
基金supported by the National High Technology Research and Development of China (863 Program) (No. 2012AA050214)the National Natural Science Foundation of China (No. 51077043)the State Grid Corporation of China (Impact research of source-grid-load interaction on operation and control of future power system)
文摘Day-ahead wind power forecasting plays an essential role in the safe and economic use of wind energy,the comprehending-intrinsic complexity of the behavior of wind is considered as the main challenge faced in improving forecasting accuracy.To improve forecasting accuracy,this paper focuses on two aspects:①proposing a novel hybrid method using Boosting algorithm and a multistep forecast approach to improve the forecasting capacity of traditional ARMA model;②calculating the existing error bounds of the proposed method.To validate the effectiveness of the novel hybrid method,one-year period of real data are used for test,which were collected from three operating wind farms in the east coast of Jiangsu Province,China.Meanwhile conventional ARMA model and persistence model are both used as benchmarks with which the proposed method is compared.Test results show that the proposed method achieves a more accurate forecast.
基金supported by National Natural Science Foundation of China (Grant No. 71532004)
文摘This study explores the influence of social media on stock volatility and builds a feature model with an intelligence algorithm using social media data from Xueqiu.com in China, Sina Finance and Economics, Sina Microblog, and Oriental Fortune. We find that the effect of social factors, such as increased attention to a stock's volatility, is more significant than public sentiment. A prediction model is introduced based on social factors and public sentiment to predict stock volatility. Our findings indicate that the influence of social media data on the next day's volatility is more significant but declines over time.