期刊文献+
共找到2,505篇文章
< 1 2 126 >
每页显示 20 50 100
基于Boosting算法集成遗传模糊分类器的文本分类 被引量:1
1
作者 罗军 况夯 《计算机应用》 CSCD 北大核心 2008年第9期2386-2388,2391,共4页
提出一种新颖的基于Boosting模糊分类的文本分类方法。首先采用潜在语义索引(LSI)对文本特征进行选择;然后提出Boosting算法集成模糊分类器学习,在每轮迭代训练过程中,算法通过调整训练样本的分布,利用遗传算法产生分类规则。减少分类... 提出一种新颖的基于Boosting模糊分类的文本分类方法。首先采用潜在语义索引(LSI)对文本特征进行选择;然后提出Boosting算法集成模糊分类器学习,在每轮迭代训练过程中,算法通过调整训练样本的分布,利用遗传算法产生分类规则。减少分类规则能够正确分类样本的权值,使得新产生的分类规则重点考虑难于分类的样本。实验结果表明,该文本分类算法具有良好分类的性能。 展开更多
关键词 模糊分类 特征选择 潜在语义索引 boosting算法 文本分类
下载PDF
基于改进Boosting算法的车险理赔额组合模型预测
2
作者 邢铭轩 赵锦艳 《科技与创新》 2024年第9期1-6,共6页
针对车险理赔额预测中单一机器学习方法存在的问题,提出一种基于Optuna调参后的XGBoost(eXtreme Gradient Boosting)-LightGBM(Light Gradient Boosting Machine)组合模型预测方法。首先,分别构建XGBoost与LightGBM单个模型,并使用Optun... 针对车险理赔额预测中单一机器学习方法存在的问题,提出一种基于Optuna调参后的XGBoost(eXtreme Gradient Boosting)-LightGBM(Light Gradient Boosting Machine)组合模型预测方法。首先,分别构建XGBoost与LightGBM单个模型,并使用Optuna框架对模型参数进行优化;其次,将2个优化后的模型预测结果进行加权融合;最后,采用法国第三方责任险的车险保单数对融合模型进行验证。结果表明,与单一的XGBoost和LightGBM模型相比,经过参数优化后的组合模型在预测车险理赔额时展现出更低的均方根误差,从而证明其更高的预测精度。 展开更多
关键词 机器学习 boosting算法 组合模型 Optuna算法
下载PDF
基于Boosting的迭代加权集成分类算法 被引量:1
3
作者 杜诗语 韩萌 +2 位作者 申明尧 张春砚 孙蕊 《计算机应用研究》 CSCD 北大核心 2021年第4期1038-1043,共6页
在集成分类中,如何对基分类器实现动态更新和为基分类器分配合适的权值一直是研究的重点。针对以上两点,提出了BIE和BIWE算法。BIE算法通过最新训练的基分类器的准确率确定集成是否需要替换性能较差的基分类器及需替换的个数,实现对集... 在集成分类中,如何对基分类器实现动态更新和为基分类器分配合适的权值一直是研究的重点。针对以上两点,提出了BIE和BIWE算法。BIE算法通过最新训练的基分类器的准确率确定集成是否需要替换性能较差的基分类器及需替换的个数,实现对集成分类器的动态迭代更新;BIWE算法在此基础上提出了一个加权函数,对具有不同参数特征的数据流可以有针对性地获得基分类器的最佳权值,从而提升集成分类器的整体性能。实验结果表明,BIE算法相较对比算法在准确率持平或略高的情况下,可以减少生成树的叶子数、节点数和树的深度;BIWE算法相较对比算法不仅准确率较高,而且能大幅度减少生成树的规模。 展开更多
关键词 数据流 分类算法 集成学习 boosting
下载PDF
基于XGBoost集成机器学习算法的供电台区停电敏感度仿真
4
作者 王柯成 卢海明 +1 位作者 辜小琢 黄朝凯 《微型电脑应用》 2024年第11期69-74,共6页
为了提升电力用户用电满意度,增加频繁停电检测命中率,研究基于XGBoost集成机器学习算法的供电台区停电敏感度仿真。将供电台区用户分为普通用户与重要用户,并判断是否为停电敏感度用户,采集不同类型用户历史数据,经数据预处理以及关联... 为了提升电力用户用电满意度,增加频繁停电检测命中率,研究基于XGBoost集成机器学习算法的供电台区停电敏感度仿真。将供电台区用户分为普通用户与重要用户,并判断是否为停电敏感度用户,采集不同类型用户历史数据,经数据预处理以及关联度分析后,将其作为输入,建立基于XGBoost集成机器学习算法的供电台区停电敏感度预测模型,通过XGBoost算法,预测供电台区停电敏感度,集成贝叶斯机器学习算法进行参数调优,获取最优分类阈值,精准预测供电台区用户停电敏感度。实验结果表明,该方法能够准确划分停电敏感用户群,有效预测供电台区不同类型用户的停电敏感度,用户覆盖率与对敏感用户预测的命中率均可达到95%以上。 展开更多
关键词 XGboost算法 集成机器学习 贝叶斯算法 供电台区用户 停电敏感度
下载PDF
低关联度的Boosting类集成算法研究
5
作者 关超 高敬阳 尚颖 《计算机工程与设计》 CSCD 北大核心 2012年第3期1112-1116,共5页
针对Boosting类算法生成的个体网络的迭代方式相关性较高,对某些不稳定学习算法的集成结果并不理想的情况,基于Local Boost算法局部误差调整样本权值的思想,提出了基于距离及其权值挑选邻居样本的方法,并通过局部误差产生训练样本种子,... 针对Boosting类算法生成的个体网络的迭代方式相关性较高,对某些不稳定学习算法的集成结果并不理想的情况,基于Local Boost算法局部误差调整样本权值的思想,提出了基于距离及其权值挑选邻居样本的方法,并通过局部误差产生训练样本种子,采用Lazy Bagging方法生成针对各样本种子的个体网络训练样本集来训练、生成新的个体网络,UCI数据集上实验结果表明,该算法得到的个体网络相关度较小,集成性能较为稳定。 展开更多
关键词 低相关度 神经网络集成 邻域误差 二次集成 boosting集成
下载PDF
基于K-Means聚类和Boosting算法的配电网线损计算方法
6
作者 马芳 张晨晖 《通信电源技术》 2024年第1期1-3,共3页
传统线损计算方法所需电气参数较多且计算过程烦琐,导致配电网线损计算结果精度较低,因此提出了一种基于K-Means聚类和Boosting算法的配电网线损计算方法。先采用K-Means聚类算法挖掘配电网的线路负荷有功电量、线路负荷无功电量、线路... 传统线损计算方法所需电气参数较多且计算过程烦琐,导致配电网线损计算结果精度较低,因此提出了一种基于K-Means聚类和Boosting算法的配电网线损计算方法。先采用K-Means聚类算法挖掘配电网的线路负荷有功电量、线路负荷无功电量、线路长度及线路负载率等电气特征指标,再将电气特征指标作为Boosting算法线损预测模型的输入数据,经过模型训练完成配电网线损的预测计算。实验结果表明,该设计方法的线损计算值与真实值之间的误差仅为4.27%,具有较高的配电网线损计算精度。 展开更多
关键词 K-MEANS聚类 boosting算法 配电网线损 线损计算
下载PDF
Boosting家族AdaBoost系列代表算法 被引量:27
7
作者 涂承胜 刁力力 +1 位作者 鲁明羽 陆玉昌 《计算机科学》 CSCD 北大核心 2003年第3期30-34,145,共6页
Boosting is one of the most representational ensemble prediction methods. It can be divided into two se-ries: Boost-by-majority and Adaboost. This paper briefly introduces the research status of Boosting and one of it... Boosting is one of the most representational ensemble prediction methods. It can be divided into two se-ries: Boost-by-majority and Adaboost. This paper briefly introduces the research status of Boosting and one of its seri-als-AdaBoost,analyzes the typical algorithms of AdaBoost. 展开更多
关键词 boosting Adaboost.R算法 Adaboost.oc算法 学习算法 ADAboost算法
下载PDF
基于集成改进蚁群算法的作战环推荐方法 被引量:1
8
作者 李杰 谭跃进 《系统工程与电子技术》 EI CSCD 北大核心 2024年第6期2002-2012,共11页
作战环推荐是依靠优化算法从作战网络中为指挥员推荐最优的作战环,以对目标形成高质量打击。未来作战中的作战环推荐面临体系规模大、决策节奏快的特点。对此,提出了一种集成改进的蚁群算法,能够实现高效、高质的作战环推荐优化求解。首... 作战环推荐是依靠优化算法从作战网络中为指挥员推荐最优的作战环,以对目标形成高质量打击。未来作战中的作战环推荐面临体系规模大、决策节奏快的特点。对此,提出了一种集成改进的蚁群算法,能够实现高效、高质的作战环推荐优化求解。首先,将作战环推荐问题转换为一种基于多仓库路径规划的数学模型。然后,针对原始蚁群算法前期收敛速度慢、算法参数对结果影响大和容易陷入局部最优的问题分别提出了3种改进策略:基于边权重信息的信息素初始化、基于差分进化的蚁群算法参数自适应优化和基于遗传算子的全局搜索能力提升,并进行了集成改进。最后,在案例分析中对集成改进蚁群算法进行了分析和对比,验证了所提算法在不需要大幅提高耗时的情况下,优化结果要优于未集成改进的蚁群算法,且相比于原始蚁群算法提升效果显著。 展开更多
关键词 作战环推荐 多仓库路径规划 智能优化 蚁群算法 集成改进
下载PDF
电力系统短期负荷预测的多神经网络Boosting集成模型 被引量:8
9
作者 高琳 高峰 +1 位作者 管晓宏 周佃民 《西安交通大学学报》 EI CAS CSCD 北大核心 2004年第10期1026-1030,共5页
提出了一种改进的多神经网络集成自适应Boosting回归算法.算法中采用相对误差模型代替绝对误差模型,可以更接近于回归预测问题的要求,并在Boosting迭代过程中,在对训练集采样得到新的训练子集的同时,也对校验集采样得到新的校验子集,保... 提出了一种改进的多神经网络集成自适应Boosting回归算法.算法中采用相对误差模型代替绝对误差模型,可以更接近于回归预测问题的要求,并在Boosting迭代过程中,在对训练集采样得到新的训练子集的同时,也对校验集采样得到新的校验子集,保证了两者的一致性.进而采用美国加州电力市场的实际数据,建立了由多个神经网络集成的电力系统短期负荷预测模型.预测结果表明,与传统的单网络预测模型相比,Boosting集成预测模型能显著提高模型输出的稳定性,增强网络结构及模型选择的可靠性,获得更高的预测精度. 展开更多
关键词 短期负荷预测 boosting算法 神经网络集成 电力系统
下载PDF
Boosting集成支持向量回归机的滑坡位移预测 被引量:9
10
作者 董辉 傅鹤林 +1 位作者 冷伍明 龙万学 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第9期6-10,共5页
支持向量回归机(SVR)在实际的学习应用中,由于数据时空的复杂性和算法本身的参数选择,学习模型难以达到预期的效果.针对这个问题,提出了基于Boosting集成的支持向量回归机方法.通过在原始数据集加权采样的基础上,进行多次迭代子SVR机器... 支持向量回归机(SVR)在实际的学习应用中,由于数据时空的复杂性和算法本身的参数选择,学习模型难以达到预期的效果.针对这个问题,提出了基于Boosting集成的支持向量回归机方法.通过在原始数据集加权采样的基础上,进行多次迭代子SVR机器学习,不断调整样本权值再采样,优化机器学习模型,然后对迭代所得的每级支持向量回归结果按某种组合方法进行集成,得到最终的回归函数形式.应用该方法进行了仿真试验和滑坡变形时序预测研究.结果表明:使用集成的SVR进行回归预测较之单一的SVR具有更高的准确性和更好的泛化性.对Boosting与Bagging 2种不同的集成SVR,进行了比较研究,试验结果表明,2种算法性能相差不大,总体上前者强于后者. 展开更多
关键词 支持向量机 boosting集成 BAGGING 滑坡位移 预测
下载PDF
基于Boosting的决策树集成土地评价 被引量:8
11
作者 薛月菊 胡月明 +1 位作者 杨敬锋 陈强 《农业工程学报》 EI CAS CSCD 北大核心 2008年第7期78-81,共4页
传统的土地评价方法易受人为因素的限制,探索更科学合理的土地资源评价方法,对土地利用与规划具有重要意义。由于决策树具有分类精度高、分类器可解释性强的优点,特别是C5.0采用了提高决策树分类精度的Boosting技术,提出利用Boosting技... 传统的土地评价方法易受人为因素的限制,探索更科学合理的土地资源评价方法,对土地利用与规划具有重要意义。由于决策树具有分类精度高、分类器可解释性强的优点,特别是C5.0采用了提高决策树分类精度的Boosting技术,提出利用Boosting技术的决策树集成C5.0进行土地评价的方法。采用C5.0算法对广东省土地资源进行了评价,对不使用Boosting的决策树和使用Boosting决策树集成的评价结果进行了分析和比较。研究结果表明利用决策树进行土地质量评价能够得到较高的评价精度,且Boosting决策树集成的土地评价精度高于不使用Boosting的决策树的精度。 展开更多
关键词 土地评价 决策树集成 boosting技术 评价规则
下载PDF
基于Boosting算法的垃圾邮件过滤方法研究 被引量:7
12
作者 柴宝仁 谷文成 +2 位作者 牛占云 周宏君 王克生 《北京理工大学学报》 EI CAS CSCD 北大核心 2013年第1期79-83,共5页
为解决垃圾邮件过滤的精确度和有效性问题,提出了一种基于邮件内容过滤的垃圾邮件过滤方法,该方法采用Boosting算法构造了一种垃圾邮件过滤器,利用该垃圾邮件过滤器实现对垃圾邮件的过滤.本文借鉴文本分类和信息检索领域所使用的评价指... 为解决垃圾邮件过滤的精确度和有效性问题,提出了一种基于邮件内容过滤的垃圾邮件过滤方法,该方法采用Boosting算法构造了一种垃圾邮件过滤器,利用该垃圾邮件过滤器实现对垃圾邮件的过滤.本文借鉴文本分类和信息检索领域所使用的评价指标,构建了垃圾邮件过滤器的评价体系,利用该评价体系,针对基于Boosting算法所构造的垃圾邮件过滤器对垃圾邮件的过滤实验所得到的数据进行了测试和评估,测试和评估的结果验证了Boosting算法在垃圾邮件过滤中的有效性,其性能优于传统的贝叶斯算法. 展开更多
关键词 boosting算法 垃圾邮件 过滤 分类器 评价
下载PDF
基于Boosting算法的文本自动分类器设计 被引量:13
13
作者 董乐红 耿国华 周明全 《计算机应用》 CSCD 北大核心 2007年第2期384-386,共3页
Boosting算法是目前流行的一种机器学习算法。采用一种改进的Boosting算法Adaboost.MH^(KR)作为分类算法,设计了一个文本自动分类器,并给出了评估方法和结果。评价表明,该分类器有很好的分类精度。
关键词 文本分类 机器学习 boosting算法
下载PDF
Bagging偏最小二乘和Boosting偏最小二乘算法的金银花醇沉过程近红外光谱定量模型预测能力研究 被引量:13
14
作者 陈昭 吴志生 +3 位作者 史新元 徐冰 赵娜 乔延江 《分析化学》 SCIE EI CAS CSCD 北大核心 2014年第11期1679-1686,共8页
建立金银花醇沉过程中稳健的近红外光谱(Nearinfraredspectroscopy,NIR)定量模型,为金银花醇沉过程的快速评价提供方法。研究基于金银花醇沉过程绿原酸的NIR数据,通过建立Bagging偏最小二乘(Bagging-PLS)模型、Boosting偏最小二乘(... 建立金银花醇沉过程中稳健的近红外光谱(Nearinfraredspectroscopy,NIR)定量模型,为金银花醇沉过程的快速评价提供方法。研究基于金银花醇沉过程绿原酸的NIR数据,通过建立Bagging偏最小二乘(Bagging-PLS)模型、Boosting偏最小二乘(Boosting-PLS)模型与偏最小二乘(PartialLeastSquares,PLS)模型,实现对模型性能比较;在此基础上,采用组合间隔偏最小二乘法(Synergyintervalpartialleastsquares,siPLS)和竞争自适应抽样(Competitiveadaptivereweightedsampling,CARS)法分别对光谱进行变量筛选,建立模型,实现了对模型预测性能的考察。实验结果表明,Bagging-PLS和Boosting-PLS(潜变量因子数设为10)的预测性能均优于PLS模型。在此基础上,两批样品采用siPLS筛选变量,第一个批次金银花筛选波段820-1029.5nm和1030-1239.5nm,第二个批次金银花醇沉筛选波段为820-959.5nm和960-1099.5nm;采用CARS方法变量筛选,两批样品分别选择5折交叉验证和10折交叉验证,取交叉验证均方根误差(RMSECV)值最小的子集作为最终变量筛选的结果。经过变量筛选的两批金银花醇沉过程中的绿原酸含量Bagging-PLS和Boosting-PLS模型的预测均方根误差(RMSEP)值降低了0.02-0.04g/L,预测相关系数提高了4%-5%。综上,Baggning-PLS和Boosting-PLS算法可作为金银花醇沉过程NIR定量模型的快速预测方法。 展开更多
关键词 过程分析技术 金银花 醇沉 Bagging偏最小二乘算法 boosting偏最小二乘算法
下载PDF
不均衡数据下基于CS-Boosting的故障诊断算法 被引量:6
15
作者 姚培 王仲生 +1 位作者 姜洪开 刘贞报 《振动.测试与诊断》 EI CSCD 北大核心 2013年第1期111-115,169,共5页
针对传统Boosting算法在训练样本不均衡数据情况下不能较好地实现转子系统故障诊断的问题,提出了一种基于代价敏感度框架的Boosting故障诊断算法CS-Boosting。该算法建立了一个代价敏感损失函数,通过先验概率公式计算正样本与负样本的... 针对传统Boosting算法在训练样本不均衡数据情况下不能较好地实现转子系统故障诊断的问题,提出了一种基于代价敏感度框架的Boosting故障诊断算法CS-Boosting。该算法建立了一个代价敏感损失函数,通过先验概率公式计算正样本与负样本的惩罚因子,并通过决策规则的训练使代价损失函数最小化。将该算法应用到滚动轴承故障诊断中,并与传统的Adaboost算法进行对比。试验结果表明,在转子系统不能获取更多故障数据的情况下,该算法的故障诊断性能较其他算法有明显的提高。 展开更多
关键词 代价敏感度 滚动轴承 boosting算法 CS—boosting 代价损失函数
下载PDF
Boosting家族Boost-by-majority系列代表算法 被引量:4
16
作者 涂承胜 刁力力 +1 位作者 鲁明羽 陆玉昌 《计算机科学》 CSCD 北大核心 2003年第4期133-135,共3页
1 引言 Boosting由Freund和Schapire于1990年提出,是提高预测学习系统预测能力的有效工具,也是组合学习中最具代表性的方法,其代表算法可分为Boost-by-majority和AdaBoost两个系列。Boosting操纵训练例子以产生多个假设。从而建立通过... 1 引言 Boosting由Freund和Schapire于1990年提出,是提高预测学习系统预测能力的有效工具,也是组合学习中最具代表性的方法,其代表算法可分为Boost-by-majority和AdaBoost两个系列。Boosting操纵训练例子以产生多个假设。从而建立通过投票结合的预测器集合。Boosting在训练例子上维护一套概率分布。 展开更多
关键词 学习算法 boosting算法 boost-by-majority系列算法 组合学习
下载PDF
融合样本选择与特征选择的AdaBoost支持向量机集成算法 被引量:11
17
作者 杨宏晖 王芸 +2 位作者 孙进才 戴健 李亚安 《西安交通大学学报》 EI CAS CSCD 北大核心 2014年第12期63-68,共6页
为提高AdaBoost分类器集成算法的分类精确度并简化分类系统的复杂度,提出一种融合样本选择与特征选择的AdaBoost支持向量机集成算法(IFSelect-SVME).该算法在AdaBoost算法的每个循环中利用加权免疫克隆样本选择算法进行样本选择,并用... 为提高AdaBoost分类器集成算法的分类精确度并简化分类系统的复杂度,提出一种融合样本选择与特征选择的AdaBoost支持向量机集成算法(IFSelect-SVME).该算法在AdaBoost算法的每个循环中利用加权免疫克隆样本选择算法进行样本选择,并用互信息顺序向前特征选择算法进行特征选择,再利用每个循环优化选择得到的特征样本子集训练个体SVM分类器,并对其进行加权集成,生成最终的决策系统.对实验所用9组UCI数据集的仿真结果表明:与支持向量机集成(SVME)算法相比,IFSelect-SVME算法的正确分类率有所提高,且样本数可减少30.8%~80.0%,特征数可减少32.2%~81.5%,简化了集成结构,缩短了测试样本的分类时间,所得到的分类系统具有更好的分类精度. 展开更多
关键词 分类器集成 ADAboost算法 支持向量机 样本选择 特征选择
下载PDF
一种结合半监督Boosting方法的迁移学习算法 被引量:4
18
作者 洪佳明 陈炳超 印鉴 《小型微型计算机系统》 CSCD 北大核心 2011年第11期2169-2173,共5页
迁移学习是数据挖掘中的一个研究方向,试图重用相关领域的数据样本,将相关领域的知识"迁移"到新领域中帮助训练.当前,基于实例的迁移学习算法容易产生过度拟合的问题,不能充分利用相关领域中的有用数据.为了避免这个问题,通... 迁移学习是数据挖掘中的一个研究方向,试图重用相关领域的数据样本,将相关领域的知识"迁移"到新领域中帮助训练.当前,基于实例的迁移学习算法容易产生过度拟合的问题,不能充分利用相关领域中的有用数据.为了避免这个问题,通过引入目标领域的无标记样本参与训练,利用半监督Boosting方法,提出一种新的迁移学习算法,能够对样本的相关性进行更好的判断,减少选择性偏差的影响.在大量文本数据集上的实验表明了新算法的有效性. 展开更多
关键词 迁移学习 跨领域学习 boosting算法 半监督学习
下载PDF
自适应梯度Boosting算法及多硝基芳香族化合物密度的主因子选择 被引量:2
19
作者 张海 丁毅涛 +3 位作者 王尧 胡荣祖 高红旭 赵凤起 《火炸药学报》 EI CAS CSCD 北大核心 2011年第2期12-16,共5页
用自适应梯度Boosting算法研究了影响多硝基芳香族化合物(PNACs)密度的主因子。选择分子结构描述码作影响特征参数,采用影响多硝基芳香族化合物密度的分子结构描述码,依据相关影响程度给出了相应分子结构描述码,预测密度值与文献值的相... 用自适应梯度Boosting算法研究了影响多硝基芳香族化合物(PNACs)密度的主因子。选择分子结构描述码作影响特征参数,采用影响多硝基芳香族化合物密度的分子结构描述码,依据相关影响程度给出了相应分子结构描述码,预测密度值与文献值的相对误差在10%以内。 展开更多
关键词 学习算法 boosting算法 多硝基芳香族化合物 主因子
下载PDF
用Boosting算法预测多硝基芳香族化合物的密度 被引量:5
20
作者 张海 王尧 +3 位作者 陈冰 胡荣祖 高红旭 赵凤起 《火炸药学报》 EI CAS CSCD 2007年第5期5-7,共3页
采用Boosting算法对多硝基芳香族化合物(PNACs)的密度进行预估。选用分子结构描述码作为输入特征参数。结果表明,PNACs的密度与其分子结构存在良好的相关性,与人工神经网络相比,Boosting算法对预测的准确性有显著提高,预测结果的相对误... 采用Boosting算法对多硝基芳香族化合物(PNACs)的密度进行预估。选用分子结构描述码作为输入特征参数。结果表明,PNACs的密度与其分子结构存在良好的相关性,与人工神经网络相比,Boosting算法对预测的准确性有显著提高,预测结果的相对误差都在8%以内。 展开更多
关键词 物理化学 人工神经网络 boosting算法 密度预估 多硝基芳香族化合物
下载PDF
上一页 1 2 126 下一页 到第
使用帮助 返回顶部