According to phenological observation data of fourteen stations in Hunan,Hubei and Jiangxi provinces from 1994 to 2006,indices of suitable temperature at the booting stage and accumulated temperature(≥10 ℃)during th...According to phenological observation data of fourteen stations in Hunan,Hubei and Jiangxi provinces from 1994 to 2006,indices of suitable temperature at the booting stage and accumulated temperature(≥10 ℃)during the whole growth period in early or late rice in the south of China were analyzed by statistics and biological relationship between factors.Indices of the optimum daily mean temperature and the minimum temperature at the booting stage were as follows:Early convention rice variety was 25.7 ℃ and 22.3 ℃ respectively,hybrid variety was 26.5 ℃ and 23.3℃ respectively;while late convention rice variety was 25.6 ℃ and 22.3 ℃ respectively,hybrid variety was 25.8 ℃ and 22.6 ℃ respectively.Indexes of accumulated temperature during the whole growth period were as follows:The early-maturing variety,the middle-maturing variety and the late-maturing variety of early rice was 2 512.1 ℃,2 528.4 ℃ and 2 651.3 ℃ respectively,while the early-maturing variety,the middle-maturing variety and the late-maturing variety of late rice was 3 126.2 ℃,3 031.5 ℃ and 3 335.2 ℃ respectively.The above indexes all met the requirements of identification,which could provide reference for formulating the meteorological standard of rice in the south of China.展开更多
[Objective] The physiological characteristics and yield compensation effects of rice in booting stage were studied after water recovery when rice suffered water stress to provide references for improving rice water ut...[Objective] The physiological characteristics and yield compensation effects of rice in booting stage were studied after water recovery when rice suffered water stress to provide references for improving rice water utilization efficiency and its drought resistance. [Method] The pot experiments with five rice varieties under three different treatments of water stresses were conducted to study physical signs every six days after water water-recovery. [Result] Along with the increase of water recov- ery, leaf water potential, SPAD and Pn values in treatment B (light drought) in- creased fast, and its compensation effect of the soluble sugar content was higher than that of treatment C (severe drought); all sap flow speeds in treatments with water stresses fell. As for yield components, panicles per plant and spikelets per panicle decreased with water stress degree, and the decline of spikelets per pani- cle, in particular, was greatly influenced by water stress. Seed setting percentages in treatment B most reached peaks of different varieties, except of D you No. 363. The thousand-seed weight and ear weight per plant in treatment B and C both dropped, compared with control group. [Conclusion] When regular management was resumed after rice underwent water stress at booting stage, many characteristics and yield traits of rice got favorable compensation effects in the light water-stress treatments.展开更多
Genetic analysis showed that cold tolerance at booting stage of near-isogenic lines (NILs) of Kunmingxiaobaigu was controlled by a gene with large phenotypic variance. One hundred and sixty-four simple sequence repe...Genetic analysis showed that cold tolerance at booting stage of near-isogenic lines (NILs) of Kunmingxiaobaigu was controlled by a gene with large phenotypic variance. One hundred and sixty-four simple sequence repeats (SSR) distributed over 12 chromosomes were used to screen polymorphism between Towata (recurrent parent, RP) and near-isogenic line pool (NILP), and two SSR markers at the long arm of chromosome 5 showed polymorphism in comparison with RP genome. Of the two markers, RM31 was found possibly linked with the cold tolerance gene at booting stage through one-way ANOVA. Twelve SSR markers around RM31 were then used to detect polymorphism between RP and NIL, and only RM7452 had polymorphism. The gene of cold tolerance at booting stage was further mapped on chromosome 5 between RM7452 and RM31 with genetic distances of 4.8 cM and 8.0 cM, respectively. This gene explained 10.50% of phenotypic variance and 5.10% of phenotypic variance of fully filled grains, and was tentatively designated as Ctb(t).展开更多
This study was carried out to identify molecular responses of the two varieties with different cold tolerance under cold water stress (13℃) at the booting stage. Transcriptional responses of the genes were analyzed in
Rice is a typical silicon-loving crop,known as"representative of silicic acid plant".Southeast Asia and other rice-producing countries have listed silicon fertilizer as the fourth most elemental fertilizer a...Rice is a typical silicon-loving crop,known as"representative of silicic acid plant".Southeast Asia and other rice-producing countries have listed silicon fertilizer as the fourth most elemental fertilizer after nitrogen,phosphorus and potassium.Therefore,improving the utilization of soil silicon and promoting the transformation of soil silicon form is of great significance to the growth of rice and the development of agriculture.In order to investigate the effects of silicon preparations on different forms of silicon in soil and silicon contenst in rice plants,a pot experiment with Dongnong 427 was carried out,spraying on rice leaves at the booting stage,and three treatment groups(Si-TG,Si-EG and Si-60G)and a control group(CK)were set up.The contents of available silicon,water-soluble silicon,amorphous silicon,active silicon in soil and plant silicon were measured at the heading stage and the maturity stage of rice,then the effect of silicon preparation on the silicon content of rice soil and plant was analyzed.The results showed that spraying silicon preparation could significantly improve the silicon content of rice plants,promote the transformation of silicon forms in soil to varying degrees,and improve the silicon supply capacity of soil.Compared with CK,the soil available silicon content increased by 7.42%-8.26%at the heading stage and 6.70%at the maturity stage.The Si-EG treatment at the heading stage had the best effect on increasing the available silicon content of the soil,which was 8.26%higher than that of CK,reaching a significant level;the Si-TG treatment at the maturity stage had the best effect on increasing the silicon content of the plant,and the silicon content of the plant was 27.17%higher than that of CK,reaching a significant level.展开更多
基金Supported by Project for NewTechnology Generalization of China Meteorological Administration(CMATG2007M37)~~
文摘According to phenological observation data of fourteen stations in Hunan,Hubei and Jiangxi provinces from 1994 to 2006,indices of suitable temperature at the booting stage and accumulated temperature(≥10 ℃)during the whole growth period in early or late rice in the south of China were analyzed by statistics and biological relationship between factors.Indices of the optimum daily mean temperature and the minimum temperature at the booting stage were as follows:Early convention rice variety was 25.7 ℃ and 22.3 ℃ respectively,hybrid variety was 26.5 ℃ and 23.3℃ respectively;while late convention rice variety was 25.6 ℃ and 22.3 ℃ respectively,hybrid variety was 25.8 ℃ and 22.6 ℃ respectively.Indexes of accumulated temperature during the whole growth period were as follows:The early-maturing variety,the middle-maturing variety and the late-maturing variety of early rice was 2 512.1 ℃,2 528.4 ℃ and 2 651.3 ℃ respectively,while the early-maturing variety,the middle-maturing variety and the late-maturing variety of late rice was 3 126.2 ℃,3 031.5 ℃ and 3 335.2 ℃ respectively.The above indexes all met the requirements of identification,which could provide reference for formulating the meteorological standard of rice in the south of China.
基金Supported by Capacity Construction of Rice Breeding,Cultivation,and Industrialization Innovation Project in Guizhou([2011]4003)Rice Scientific Research Infrastructure Building Project in Mountainous Regions of Guizhou([2011]4005)Rice Genetics and Breeding Research and Innovation Team in Guizhou([2012]4020)~~
文摘[Objective] The physiological characteristics and yield compensation effects of rice in booting stage were studied after water recovery when rice suffered water stress to provide references for improving rice water utilization efficiency and its drought resistance. [Method] The pot experiments with five rice varieties under three different treatments of water stresses were conducted to study physical signs every six days after water water-recovery. [Result] Along with the increase of water recov- ery, leaf water potential, SPAD and Pn values in treatment B (light drought) in- creased fast, and its compensation effect of the soluble sugar content was higher than that of treatment C (severe drought); all sap flow speeds in treatments with water stresses fell. As for yield components, panicles per plant and spikelets per panicle decreased with water stress degree, and the decline of spikelets per pani- cle, in particular, was greatly influenced by water stress. Seed setting percentages in treatment B most reached peaks of different varieties, except of D you No. 363. The thousand-seed weight and ear weight per plant in treatment B and C both dropped, compared with control group. [Conclusion] When regular management was resumed after rice underwent water stress at booting stage, many characteristics and yield traits of rice got favorable compensation effects in the light water-stress treatments.
基金supportedby China National Natural Science Foundation(30160043,30260060) the Natural ScienceFoundation of Yunnan Province(2004CO010Z).
文摘Genetic analysis showed that cold tolerance at booting stage of near-isogenic lines (NILs) of Kunmingxiaobaigu was controlled by a gene with large phenotypic variance. One hundred and sixty-four simple sequence repeats (SSR) distributed over 12 chromosomes were used to screen polymorphism between Towata (recurrent parent, RP) and near-isogenic line pool (NILP), and two SSR markers at the long arm of chromosome 5 showed polymorphism in comparison with RP genome. Of the two markers, RM31 was found possibly linked with the cold tolerance gene at booting stage through one-way ANOVA. Twelve SSR markers around RM31 were then used to detect polymorphism between RP and NIL, and only RM7452 had polymorphism. The gene of cold tolerance at booting stage was further mapped on chromosome 5 between RM7452 and RM31 with genetic distances of 4.8 cM and 8.0 cM, respectively. This gene explained 10.50% of phenotypic variance and 5.10% of phenotypic variance of fully filled grains, and was tentatively designated as Ctb(t).
文摘This study was carried out to identify molecular responses of the two varieties with different cold tolerance under cold water stress (13℃) at the booting stage. Transcriptional responses of the genes were analyzed in
基金Supported by the New Ideas Team and the Doctoral Research Foundation of Northeast Agricultural University(Topic CXZ003,20082010)the Scientific Research Fund of Heilongjiang Provincial Education Department(11551067)。
文摘Rice is a typical silicon-loving crop,known as"representative of silicic acid plant".Southeast Asia and other rice-producing countries have listed silicon fertilizer as the fourth most elemental fertilizer after nitrogen,phosphorus and potassium.Therefore,improving the utilization of soil silicon and promoting the transformation of soil silicon form is of great significance to the growth of rice and the development of agriculture.In order to investigate the effects of silicon preparations on different forms of silicon in soil and silicon contenst in rice plants,a pot experiment with Dongnong 427 was carried out,spraying on rice leaves at the booting stage,and three treatment groups(Si-TG,Si-EG and Si-60G)and a control group(CK)were set up.The contents of available silicon,water-soluble silicon,amorphous silicon,active silicon in soil and plant silicon were measured at the heading stage and the maturity stage of rice,then the effect of silicon preparation on the silicon content of rice soil and plant was analyzed.The results showed that spraying silicon preparation could significantly improve the silicon content of rice plants,promote the transformation of silicon forms in soil to varying degrees,and improve the silicon supply capacity of soil.Compared with CK,the soil available silicon content increased by 7.42%-8.26%at the heading stage and 6.70%at the maturity stage.The Si-EG treatment at the heading stage had the best effect on increasing the available silicon content of the soil,which was 8.26%higher than that of CK,reaching a significant level;the Si-TG treatment at the maturity stage had the best effect on increasing the silicon content of the plant,and the silicon content of the plant was 27.17%higher than that of CK,reaching a significant level.