The^(10)boron neutron-capture therapy(BNCT)is an emerging antitumoral method that shows increasing biomedical interest.BNCT is based on the selective accumulation of the^(10)boron isotope within the tumor,which is the...The^(10)boron neutron-capture therapy(BNCT)is an emerging antitumoral method that shows increasing biomedical interest.BNCT is based on the selective accumulation of the^(10)boron isotope within the tumor,which is then irradiated with low-energy thermal neutrons,generating nuclear fission that produces 7lithium,4helium,andγrays.Simple catechol-borate esters have been rather overlooked as precursors of melanin biosynthesis,and therefore,a proof-of-concept approach for using dopamine-borate(DABO)as a suitable boron-containing candidate for potential BNCT is presented here.DABO can spontaneously oxidize and autopolymerize in vitro,giving a soluble,eumelaninlike brown-black poly-DABO product.Melanotic melanoma cell cultures treated with 1 mM DABO for 24 and 48 h were viable and showed no signs of damage or cell death.The stability and possible trans-esterification of DABO is shortly discussed.Chemical calculations and quantitative structure-activity relationships(QSAR)analysis of DABO and the BNCT agent BPA indicated that they should be cell permeant and accumulate within lysosomes and melanosomes.Molecular modeling allows visualization of both the DABO precursor and the structure of a borate derivative of the proposed catechol-porphycene model for eumelanin,showing interesting features from molecular orbital calculations.The main difference between DABO and other agents,such as BPA,is that it is not a boronic acid nor a boron cluster.This simple catechol-borate ester(protected from oxidation and blackening)could be administrated to living cells and organisms,in which biosynthesis of boron-melanin in melanoma melanocytes can lead to improved BNCT.展开更多
Adenosine triphosphate(ATP)borate ester as a new boron agent for boron neutron capture therapy was tested.It was synthesized via a dehydration reaction induced by heating adenosine triphosphate disodium with boric aci...Adenosine triphosphate(ATP)borate ester as a new boron agent for boron neutron capture therapy was tested.It was synthesized via a dehydration reaction induced by heating adenosine triphosphate disodium with boric acid.Next,ATP borate ester pretreatments were assessed to study their effects on cell sensitization from exposure to thermal neutron irradiation emitted by a nuclear reactor.Using cell viability assays(CCK8),survival rates of A549 cells pretreated with or without boroncontaining agents,including ATP borate ester and 4-dihydroxyborylphenylalanine(BPA),were measured.One week after feeding an ATP borate ester solution to tumorbearing nude mice,elemental B content values of tumor muscle and blood were measured using inductively coupled plasma mass spectrometry(ICP-MS).Meanwhile,other tumor tissue samples were placed in a culture medium,subjected to a 3-min neutron irradiation exposure,and then fixed in formalin 24 h later for the terminaldeoxynucleotidyl transferase(TDT)-mediated d UTP nick end labeling(TUNEL)immunohistochemical staining analysis.Results showed that A549 cell irradiation sensitization(irradiation dose of 0.33 Gy)varied with pretreatment.Sensitization values of the ATP borate ester pretreatment group were 1.3–14.1 with boron agent concentrations of 0.3–4.5 mM.Within 1.1–3.4 mM,ATP borate ester showed significantly higher sensitization values than BPA.Meanwhile,TUNEL results demonstrated that apoptosis rates of tumor tissue cells exposed to irradiation after ATP borate ester pretreatment significantly exceeded the corresponding rates for BPA-pretreated cells.In animal experiments,although the distribution ratio of ATP borate ester(tumor tissue/normal muscle,T/N)of 1.2 was not significantly different compared with that of BPA(1.3),the total ATP borate ester concentration in the tumor tissue(0.79±0.05μg/g)significantly exceeded that of BPA(0.58±0.05μg/g).Thus,compared with BPA,the greater enrichment of ATP borate ester in tumor tissues permits preferential targeting toward tumor cells for radiation sensitization.Therefore,ATP borate ester is superior to BPA for use in boron neutron capture therapy.展开更多
Global economic and pollution concerns are having a major impact on how modern engine oils are being formulated.Modern engine oil specifications mandate reduced levels of phosphorus and sulfur to protect the efficacy ...Global economic and pollution concerns are having a major impact on how modern engine oils are being formulated.Modern engine oil specifications mandate reduced levels of phosphorus and sulfur to protect the efficacy of pollution control devices.In addition,modern engine oil must also be more fuel efficient than earlier generations to reduce greenhouse gas emissions and the impact of high priced gasoline and diesel fuel to the consumer.At the same time,oxidation,wear,and corrosion performance of the oil must not be compromised.Multifunctional additives are useful formulation tools that help formulators meet these tough new challenges.One such additive is the organo-borate ester/amide.Originally conceived as an organic friction modifier,this patented technology is really a multifunctional additive that addresses the global economic and pollution concerns.With the addition of boron,this unique commercial organic friction modifier also imparts antioxidancy,antiwear and anticorrosion properties to engine oil.In addition,the organo-borate ester/amide is compatible with pollution control devices because it does not contain sulfur or phosphorus.Work is on going to uncover additional beneficial properties of this chemistry.展开更多
In nature, biological systems maintain their unique structures and functions by using nonequilibrium processes driven by chemical fuels. Inspired by natural systems, transient hydrogel systems based on chemical reacti...In nature, biological systems maintain their unique structures and functions by using nonequilibrium processes driven by chemical fuels. Inspired by natural systems, transient hydrogel systems based on chemical reaction networks have been developed that are in thermodynamically nonequilibrium states. The formation of dynamic covalent bonds is an effective tool for designing analogous systems. Herein, we design a transient polymer hydrogel based on fuel-mediated covalent borate ester bonds. The pH-sensitive covalent borate ester bond is formed by the reaction between polyvinyl alcohol (PVA) and boric acid (B(OH)_(3)). Sodium hydroxide (NaOH) and 1,3-propanesulfonate (PrS) are used together as the chemical fuels to temporally control the pH of the system. Meanwhile, the lifetime of the transient hydrogel can be simply controlled by adjusting the composition of the chemical fuel, and the cyclic phase transitions can also be achieved. These programmable transient hydrogels have potential applications in the fields of information transmission and fluid guidance.展开更多
Esterification or transesterification reactions are usually carried out in the presence of homogeneous or heterogeneous catalysts. However, recently a new method was reported for the esterification of carboxylic acids...Esterification or transesterification reactions are usually carried out in the presence of homogeneous or heterogeneous catalysts. However, recently a new method was reported for the esterification of carboxylic acids by tributyl borate under solvent- and catalyst-free conditions. In order to show the synthetic ability of trialkyl borate esters in the esterification reactions, here, the esterification of other carboxylic acids and diacids by tributyl-, triisoamyl-, and tribenzyl borate under the same conditions were reported. Some of the prepared ester and diester products have found wide applications as plasticizers and synthetic ester base lubricants. The esterification reactions have been cleanly carried out in the absence of any solvent under catalyst-free conditions. The maximum rate belongs to isoamyl trichloroacetate (VIb) which reached about 76% within about 6.5 h. On the basis of obtained findings, it seems that electron withdrawing groups on carboxylic acid facilitate the esterification reaction.展开更多
文摘The^(10)boron neutron-capture therapy(BNCT)is an emerging antitumoral method that shows increasing biomedical interest.BNCT is based on the selective accumulation of the^(10)boron isotope within the tumor,which is then irradiated with low-energy thermal neutrons,generating nuclear fission that produces 7lithium,4helium,andγrays.Simple catechol-borate esters have been rather overlooked as precursors of melanin biosynthesis,and therefore,a proof-of-concept approach for using dopamine-borate(DABO)as a suitable boron-containing candidate for potential BNCT is presented here.DABO can spontaneously oxidize and autopolymerize in vitro,giving a soluble,eumelaninlike brown-black poly-DABO product.Melanotic melanoma cell cultures treated with 1 mM DABO for 24 and 48 h were viable and showed no signs of damage or cell death.The stability and possible trans-esterification of DABO is shortly discussed.Chemical calculations and quantitative structure-activity relationships(QSAR)analysis of DABO and the BNCT agent BPA indicated that they should be cell permeant and accumulate within lysosomes and melanosomes.Molecular modeling allows visualization of both the DABO precursor and the structure of a borate derivative of the proposed catechol-porphycene model for eumelanin,showing interesting features from molecular orbital calculations.The main difference between DABO and other agents,such as BPA,is that it is not a boronic acid nor a boron cluster.This simple catechol-borate ester(protected from oxidation and blackening)could be administrated to living cells and organisms,in which biosynthesis of boron-melanin in melanoma melanocytes can lead to improved BNCT.
基金supported by the project,‘‘Research on the targeted treatment of malignant tumors with Base 20180199 New Transmembrane Antibody’’(No.JCYJ20180507182217748)the National Natural Science Foundation of China(No.11375117)
文摘Adenosine triphosphate(ATP)borate ester as a new boron agent for boron neutron capture therapy was tested.It was synthesized via a dehydration reaction induced by heating adenosine triphosphate disodium with boric acid.Next,ATP borate ester pretreatments were assessed to study their effects on cell sensitization from exposure to thermal neutron irradiation emitted by a nuclear reactor.Using cell viability assays(CCK8),survival rates of A549 cells pretreated with or without boroncontaining agents,including ATP borate ester and 4-dihydroxyborylphenylalanine(BPA),were measured.One week after feeding an ATP borate ester solution to tumorbearing nude mice,elemental B content values of tumor muscle and blood were measured using inductively coupled plasma mass spectrometry(ICP-MS).Meanwhile,other tumor tissue samples were placed in a culture medium,subjected to a 3-min neutron irradiation exposure,and then fixed in formalin 24 h later for the terminaldeoxynucleotidyl transferase(TDT)-mediated d UTP nick end labeling(TUNEL)immunohistochemical staining analysis.Results showed that A549 cell irradiation sensitization(irradiation dose of 0.33 Gy)varied with pretreatment.Sensitization values of the ATP borate ester pretreatment group were 1.3–14.1 with boron agent concentrations of 0.3–4.5 mM.Within 1.1–3.4 mM,ATP borate ester showed significantly higher sensitization values than BPA.Meanwhile,TUNEL results demonstrated that apoptosis rates of tumor tissue cells exposed to irradiation after ATP borate ester pretreatment significantly exceeded the corresponding rates for BPA-pretreated cells.In animal experiments,although the distribution ratio of ATP borate ester(tumor tissue/normal muscle,T/N)of 1.2 was not significantly different compared with that of BPA(1.3),the total ATP borate ester concentration in the tumor tissue(0.79±0.05μg/g)significantly exceeded that of BPA(0.58±0.05μg/g).Thus,compared with BPA,the greater enrichment of ATP borate ester in tumor tissues permits preferential targeting toward tumor cells for radiation sensitization.Therefore,ATP borate ester is superior to BPA for use in boron neutron capture therapy.
文摘Global economic and pollution concerns are having a major impact on how modern engine oils are being formulated.Modern engine oil specifications mandate reduced levels of phosphorus and sulfur to protect the efficacy of pollution control devices.In addition,modern engine oil must also be more fuel efficient than earlier generations to reduce greenhouse gas emissions and the impact of high priced gasoline and diesel fuel to the consumer.At the same time,oxidation,wear,and corrosion performance of the oil must not be compromised.Multifunctional additives are useful formulation tools that help formulators meet these tough new challenges.One such additive is the organo-borate ester/amide.Originally conceived as an organic friction modifier,this patented technology is really a multifunctional additive that addresses the global economic and pollution concerns.With the addition of boron,this unique commercial organic friction modifier also imparts antioxidancy,antiwear and anticorrosion properties to engine oil.In addition,the organo-borate ester/amide is compatible with pollution control devices because it does not contain sulfur or phosphorus.Work is on going to uncover additional beneficial properties of this chemistry.
基金supported by the Shenzhen Fundamental Research Program(grant no.JCYJ20190806154814347)the National Natural Science Foundation of China(grant no.21975145).
文摘In nature, biological systems maintain their unique structures and functions by using nonequilibrium processes driven by chemical fuels. Inspired by natural systems, transient hydrogel systems based on chemical reaction networks have been developed that are in thermodynamically nonequilibrium states. The formation of dynamic covalent bonds is an effective tool for designing analogous systems. Herein, we design a transient polymer hydrogel based on fuel-mediated covalent borate ester bonds. The pH-sensitive covalent borate ester bond is formed by the reaction between polyvinyl alcohol (PVA) and boric acid (B(OH)_(3)). Sodium hydroxide (NaOH) and 1,3-propanesulfonate (PrS) are used together as the chemical fuels to temporally control the pH of the system. Meanwhile, the lifetime of the transient hydrogel can be simply controlled by adjusting the composition of the chemical fuel, and the cyclic phase transitions can also be achieved. These programmable transient hydrogels have potential applications in the fields of information transmission and fluid guidance.
文摘Esterification or transesterification reactions are usually carried out in the presence of homogeneous or heterogeneous catalysts. However, recently a new method was reported for the esterification of carboxylic acids by tributyl borate under solvent- and catalyst-free conditions. In order to show the synthetic ability of trialkyl borate esters in the esterification reactions, here, the esterification of other carboxylic acids and diacids by tributyl-, triisoamyl-, and tribenzyl borate under the same conditions were reported. Some of the prepared ester and diester products have found wide applications as plasticizers and synthetic ester base lubricants. The esterification reactions have been cleanly carried out in the absence of any solvent under catalyst-free conditions. The maximum rate belongs to isoamyl trichloroacetate (VIb) which reached about 76% within about 6.5 h. On the basis of obtained findings, it seems that electron withdrawing groups on carboxylic acid facilitate the esterification reaction.
基金supported by the National Natural Science Foundation of China(52172156,51832005)the Natural Science Foundation of Fujian Province of China(2023J06005)the Natural Science Foundation of Zhejiang Province(LD22E010001)。