期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Effects of data smoothing and recurrent neural network(RNN)algorithms for real-time forecasting of tunnel boring machine(TBM)performance
1
作者 Feng Shan Xuzhen He +1 位作者 Danial Jahed Armaghani Daichao Sheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1538-1551,共14页
Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk... Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering. 展开更多
关键词 tunnel boring machine(TBM) Penetration rate(PR) Time series forecasting Recurrent neural network(RNN)
下载PDF
Vibrations induced by tunnel boring machine in urban areas: In situ measurements and methodology of analysis 被引量:1
2
作者 Antoine Rallu Nicolas Berthoz +1 位作者 Simon Charlemagne Denis Branque 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期130-145,共16页
Excavation with tunnel boring machine(TBM)can generate vibrations,causing damages to neighbouring buildings and disturbing the residents or the equipment.This problem is particularly challenging in urban areas,where T... Excavation with tunnel boring machine(TBM)can generate vibrations,causing damages to neighbouring buildings and disturbing the residents or the equipment.This problem is particularly challenging in urban areas,where TBMs are increasingly large in diameter and shallow in depth.In response to this problem,four experimental campaigns were carried out in different geotechnical contexts in France.The vibration measurements were acquired on the surface and inside the TBMs.These measurements are also complemented by few data in the literature.An original methodology of signal processing is pro-posed to characterize the amplitude of the particle velocities,as well as the frequency content of the signals to highlight the most energetic bands.The levels of vibrations are also compared with the thresholds existing in various European regulations concerning the impact on neighbouring structures and the disturbance to local residents. 展开更多
关键词 Ground-borne vibrations tunnel boring machine(TBM) In situ measurement Dynamic characterization Vibration levels Site spectrum
下载PDF
Soft ground tunnel lithology classification using clustering-guided light gradient boosting machine
3
作者 Kursat Kilic Hajime Ikeda +1 位作者 Tsuyoshi Adachi Youhei Kawamura 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期2857-2867,共11页
During tunnel boring machine(TBM)excavation,lithology identification is an important issue to understand tunnelling performance and avoid time-consuming excavation.However,site investigation generally lacks ground sam... During tunnel boring machine(TBM)excavation,lithology identification is an important issue to understand tunnelling performance and avoid time-consuming excavation.However,site investigation generally lacks ground samples and the information is subjective,heterogeneous,and imbalanced due to mixed ground conditions.In this study,an unsupervised(K-means)and synthetic minority oversampling technique(SMOTE)-guided light-gradient boosting machine(LightGBM)classifier is proposed to identify the soft ground tunnel classification and determine the imbalanced issue of tunnelling data.During the tunnel excavation,an earth pressure balance(EPB)TBM recorded 18 different operational parameters along with the three main tunnel lithologies.The proposed model is applied using Python low-code PyCaret library.Next,four decision tree-based classifiers were obtained in a short time period with automatic hyperparameter tuning to determine the best model for clustering-guided SMOTE application.In addition,the Shapley additive explanation(SHAP)was implemented to avoid the model black box problem.The proposed model was evaluated using different metrics such as accuracy,F1 score,precision,recall,and receiver operating characteristics(ROC)curve to obtain a reasonable outcome for the minority class.It shows that the proposed model can provide significant tunnel lithology identification based on the operational parameters of EPB-TBM.The proposed method can be applied to heterogeneous tunnel formations with several TBM operational parameters to describe the tunnel lithologies for efficient tunnelling. 展开更多
关键词 Earth pressure balance(EPB) tunnel boring machine(TBM) Soft ground tunnelling tunnel lithology Operational parameters Synthetic minority oversampling technique (SMOTE) K-means clustering
下载PDF
A performance-based hybrid deep learning model for predicting TBM advance rate using Attention-ResNet-LSTM
4
作者 Sihao Yu Zixin Zhang +2 位作者 Shuaifeng Wang Xin Huang Qinghua Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期65-80,共16页
The technology of tunnel boring machine(TBM)has been widely applied for underground construction worldwide;however,how to ensure the TBM tunneling process safe and efficient remains a major concern.Advance rate is a k... The technology of tunnel boring machine(TBM)has been widely applied for underground construction worldwide;however,how to ensure the TBM tunneling process safe and efficient remains a major concern.Advance rate is a key parameter of TBM operation and reflects the TBM-ground interaction,for which a reliable prediction helps optimize the TBM performance.Here,we develop a hybrid neural network model,called Attention-ResNet-LSTM,for accurate prediction of the TBM advance rate.A database including geological properties and TBM operational parameters from the Yangtze River Natural Gas Pipeline Project is used to train and test this deep learning model.The evolutionary polynomial regression method is adopted to aid the selection of input parameters.The results of numerical exper-iments show that our Attention-ResNet-LSTM model outperforms other commonly-used intelligent models with a lower root mean square error and a lower mean absolute percentage error.Further,parametric analyses are conducted to explore the effects of the sequence length of historical data and the model architecture on the prediction accuracy.A correlation analysis between the input and output parameters is also implemented to provide guidance for adjusting relevant TBM operational parameters.The performance of our hybrid intelligent model is demonstrated in a case study of TBM tunneling through a complex ground with variable strata.Finally,data collected from the Baimang River Tunnel Project in Shenzhen of China are used to further test the generalization of our model.The results indicate that,compared to the conventional ResNet-LSTM model,our model has a better predictive capability for scenarios with unknown datasets due to its self-adaptive characteristic. 展开更多
关键词 tunnel boring machine(TBM) Advance rate Deep learning Attention-ResNet-LSTM Evolutionary polynomial regression
下载PDF
An Optimized System of Random Forest Model by Global Harmony Search with Generalized Opposition-Based Learning for Forecasting TBM Advance Rate
5
作者 Yingui Qiu Shuai Huang +3 位作者 Danial Jahed Armaghani Biswajeet Pradhan Annan Zhou Jian Zhou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2873-2897,共25页
As massive underground projects have become popular in dense urban cities,a problem has arisen:which model predicts the best for Tunnel Boring Machine(TBM)performance in these tunneling projects?However,performance le... As massive underground projects have become popular in dense urban cities,a problem has arisen:which model predicts the best for Tunnel Boring Machine(TBM)performance in these tunneling projects?However,performance level of TBMs in complex geological conditions is still a great challenge for practitioners and researchers.On the other hand,a reliable and accurate prediction of TBM performance is essential to planning an applicable tunnel construction schedule.The performance of TBM is very difficult to estimate due to various geotechnical and geological factors and machine specifications.The previously-proposed intelligent techniques in this field are mostly based on a single or base model with a low level of accuracy.Hence,this study aims to introduce a hybrid randomforest(RF)technique optimized by global harmony search with generalized oppositionbased learning(GOGHS)for forecasting TBM advance rate(AR).Optimizing the RF hyper-parameters in terms of,e.g.,tree number and maximum tree depth is the main objective of using the GOGHS-RF model.In the modelling of this study,a comprehensive databasewith themost influential parameters onTBMtogetherwithTBM AR were used as input and output variables,respectively.To examine the capability and power of the GOGHSRF model,three more hybrid models of particle swarm optimization-RF,genetic algorithm-RF and artificial bee colony-RF were also constructed to forecast TBM AR.Evaluation of the developed models was performed by calculating several performance indices,including determination coefficient(R2),root-mean-square-error(RMSE),and mean-absolute-percentage-error(MAPE).The results showed that theGOGHS-RF is a more accurate technique for estimatingTBMAR compared to the other applied models.The newly-developedGOGHS-RFmodel enjoyed R2=0.9937 and 0.9844,respectively,for train and test stages,which are higher than a pre-developed RF.Also,the importance of the input parameters was interpreted through the SHapley Additive exPlanations(SHAP)method,and it was found that thrust force per cutter is the most important variable on TBMAR.The GOGHS-RF model can be used in mechanized tunnel projects for predicting and checking performance. 展开更多
关键词 tunnel boring machine random forest GOGHS optimization PSO optimization GA optimization ABC optimization SHAP
下载PDF
Wear Analysis of Disc Cutters of Full Face Rock Tunnel Boring Machine 被引量:19
6
作者 ZHANG Zhaohuang MENG Liang SUN Fei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第6期1294-1300,共7页
Wear is a major factor of disc cutters’ failure. No current theory offers a standard for the prediction of disc cutter wear yet. In the field the wear prediction method commonly used is based on the excavation length... Wear is a major factor of disc cutters’ failure. No current theory offers a standard for the prediction of disc cutter wear yet. In the field the wear prediction method commonly used is based on the excavation length of tunnel boring machine(TBM) to predict the disc cutter wear and its wear law, considering the location number of each disc cutter on the cutterhead(radius for installation); in theory, there is a prediction method of using arc wear coefficient. However, the preceding two methods have their own errors, with their accuracy being 40% or so and largely relying on the technicians’ experience. Therefore, radial wear coefficient, axial wear coefficient and trajectory wear coefficient are defined on the basis of the operating characteristics of TBM. With reference to the installation and characteristics of disc cutters, those coefficients are modified according to penetration, which gives rise to the presentation of comprehensive axial wear coefficient, comprehensive radial wear coefficient and comprehensive trajectory wear coefficient. Calculation and determination of wear coefficients are made with consideration of data from a segment of TBM project(excavation length 173 m). The resulting wear coefficient values, after modification, are adopted to predict the disc cutter wear in the follow-up segment of the TBM project(excavation length of 5621 m). The prediction results show that the disc cutter wear predicted with comprehensive radial wear coefficient and comprehensive trajectory wear coefficient are not only accurate(accuracy 16.12%) but also highly congruous, whereas there is a larger deviation in the prediction with comprehensive axial wear coefficient(accuracy 41%, which is in agreement with the prediction of disc cutters’ life in the field). This paper puts forth a new method concerning prediction of life span and wear of TBM disc cutters as well as timing for replacing disc cutters. 展开更多
关键词 full face rock tunnel boring machine disc cutter radial wear coefficient axial wear coefficient trajectory wear coefficient
下载PDF
Design Theory of Full Face Rock Tunnel Boring Machine Transition Cutter Edge Angle and Its Application 被引量:24
7
作者 ZHANG Zhaohuang MENG Liang SUN Fei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期541-546,共6页
At present, the inner cutters of a full face rock tunnel boring machine (TBM) and transition cutter edge angles are designed on the basis of indentation test or linear grooving test. The inner and outer edge angles of... At present, the inner cutters of a full face rock tunnel boring machine (TBM) and transition cutter edge angles are designed on the basis of indentation test or linear grooving test. The inner and outer edge angles of disc cutters are characterized as symmetric to each other with respect to the cutter edge plane. This design has some practical defects, such as severe eccentric wear and tipping, etc. In this paper, the current design theory of disc cutter edge angle is analyzed, and the characteristics of the rock-breaking movement of disc cutters are studied. The researching results show that the rotational motion of disc cutters with the cutterhead gives rise to the difference between the interactions of inner rock and outer rock with the contact area of disc cutters, with shearing and extrusion on the inner rock and attrition on the outer rock. The wear of disc cutters at the contact area is unbalanced, among which the wear in the largest normal stress area is most apparent. Therefore, a three-dimensional model theory of rock breaking and an edge angle design theory of transition disc cutter are proposed to overcome the flaws of the currently used TBM cutter heads, such as short life span, camber wearing, tipping. And a corresponding equation is established. With reference to a specific construction case, the edge angle of the transition disc cutter has been designed based on the theory. The application of TBM in some practical project proves that the theory has obvious advantages in enhancing disc cutter life, decreasing replacement frequency, and making economic benefits. The proposed research provides a theoretical basis for the design of TBM three-dimensional disc cutters whose rock-breaking operation time can be effectively increased. 展开更多
关键词 disc cutter three-dimensional mode edge angle full face rock tunnel boring machine (TBM) flat-face cutterhead
下载PDF
Examining the effect of adverse geological conditions on jamming of a single shielded TBM in Uluabat tunnel using numerical modeling 被引量:8
8
作者 Rohola Hasanpour Jürgen Schmitt +1 位作者 Yilmaz Ozcelik Jamal Rostami 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第6期1112-1122,共11页
Severe shield jamming events have been reported during excavation of Uluabat tunnel through adverse geological conditions, which resulted in several stoppages at advancing a single shielded tunnel boring machine(TBM).... Severe shield jamming events have been reported during excavation of Uluabat tunnel through adverse geological conditions, which resulted in several stoppages at advancing a single shielded tunnel boring machine(TBM). To study the jamming mechanism, three-dimensional(3D) simulation of the machine and surrounding ground was implemented using the finite difference code FLAC3D. Numerical analyses were performed for three sections along the tunnel with a higher risk for entrapment due to the combination of overburden and geological conditions. The computational results including longitudinal displacement contours and ground pressure profiles around the shield allow a better understanding of ground behavior within the excavation. Furthermore, they allow realistically assessing the impact of adverse geological conditions on shield jamming. The calculated thrust forces, which are required to move the machine forward, are in good agreement with field observations and measurements. It also proves that the numerical analysis can effectively be used for evaluating the effect of adverse geological environment on TBM entrapments and can be applied to prediction of loads on the shield and preestimating of the required thrust force during excavation through adverse ground conditions. 展开更多
关键词 Single shielded tunnel boring machine(TBM) Numerical modeling Shield jamming Squeezing ground Uluabat tunnel
下载PDF
Real-time rock mass condition prediction with TBM tunneling big data using a novel rock-machine mutual feedback perception method 被引量:7
9
作者 Zhijun Wu Rulei Wei +1 位作者 Zhaofei Chu Quansheng Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1311-1325,共15页
Real-time perception of rock mass information is of great importance to efficient tunneling and hazard prevention in tunnel boring machines(TBMs).In this study,a TBM-rock mutual feedback perception method based on dat... Real-time perception of rock mass information is of great importance to efficient tunneling and hazard prevention in tunnel boring machines(TBMs).In this study,a TBM-rock mutual feedback perception method based on data mining(DM) is proposed,which takes 10 tunneling parameters related to surrounding rock conditions as input features.For implementation,first,the database of TBM tunneling parameters was established,in which 10,807 tunneling cycles from the Songhua River water conveyance tunnel were accommodated.Then,the spectral clustering(SC) algorithm based on graph theory was introduced to cluster the TBM tunneling data.According to the clustering results and rock mass boreability index,the rock mass conditions were classified into four classes,and the reasonable distribution intervals of the main tunneling parameters corresponding to each class were presented.Meanwhile,based on the deep neural network(DNN),the real-time prediction model regarding different rock conditions was established.Finally,the rationality and adaptability of the proposed method were validated via analyzing the tunneling specific energy,feature importance,and training dataset size.The proposed TBM-rock mutual feedback perception method enables the automatic identification of rock mass conditions and the dynamic adjustment of tunneling parameters during TBM driving.Furthermore,in terms of the prediction performance,the method can predict the rock mass conditions ahead of the tunnel face in real time more accurately than the traditional machine learning prediction methods. 展开更多
关键词 tunnel boring machine(TBM) Data mining(DM) Spectral clustering(SC) Deep neural network(DNN) Rock mass condition perception
下载PDF
Excavation of underground research laboratory ramp in granite using tunnel boring machine: Feasibility study 被引量:7
10
作者 Hongsu Ma Ju Wang +3 位作者 Ke Man Liang Chen Qiuming Gong Xingguang Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1201-1213,共13页
Underground research laboratory(URL)plays an important role in safe disposal of high-level radioactive waste(HLW).At present,the Xinchang site,located in Gansu Province of China,has been selected as the final site for... Underground research laboratory(URL)plays an important role in safe disposal of high-level radioactive waste(HLW).At present,the Xinchang site,located in Gansu Province of China,has been selected as the final site for China’s first URL,named Beishan URL.For this,a preliminary design of the Beishan URL has been proposed,including one spiral ramp,three shafts and two experimental levels.With advantages of fast advancing and limited disturbance to surrounding rock mass,the tunnel boring machine(TBM)method could be one of the excavation methods considered for the URL ramp.This paper introduces the feasibility study on using TBM to excavation of the Beishan URL ramp.The technical challenges for using TBM in Beishan URL are identified on the base of geological condition and specific layout of the spiral ramp.Then,the technical feasibility study on the specific issues,i.e.extremely hard rock mass,high abrasiveness,TBM operation,muck transportation,water drainage and material transportation,is investigated.This study demonstrates that TBM technology is a feasible method for the Beishan URL excavation.The results can also provide a reference for the design and construction of HLW disposal engineering in similar geological conditions.2020 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/). 展开更多
关键词 Underground research laboratory(URL) High-level radioactive waste(HLW)disposal tunnel boring machine(TBM) Extremely hard rock mass Rock mass boreability Spiral layout Beishan
下载PDF
Load-sharing Characteristic of Multiple Pinions Driving in Tunneling Boring Machine 被引量:7
11
作者 WEI Jing SUN Qinchao +3 位作者 SUN Wei DING Xin TU Wenping WANG Qingguo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期532-540,共9页
The failure of the key parts, such as gears, in cutter head driving system of tunneling boring machine has not been properly solved under the interaction of driving motors asynchronously and wave tunneling torque load... The failure of the key parts, such as gears, in cutter head driving system of tunneling boring machine has not been properly solved under the interaction of driving motors asynchronously and wave tunneling torque load. A dynamic model of multi-gear driving system is established considering the inertia effects of driving mechanism and cutter head as well as the bending-torsional coupling. By taking into account the nonlinear coupling factors between ring gear and multiple pinions, the influence for meshing angle by bending-torsional coupling and the dynamic load-sharing characteristic of multiple pinions driving are analyzed. Load-sharing coefficients at different rotating cutter head speeds and input torques are presented. Numerical results indicate that the load-sharing coefficients can reach up to 1.2-1.3. A simulated experimental platform of the multiple pinions driving is carried out and the torque distributions under the step load in driving shaft of pinions are measured. The imbalance of torque distribution of pinions is verified and the load-sharing coefficients in each pinion can reach 1.262. The results of simulation and test are similar, which shows the correctness of theoretical model. A loop coupling control method is put forward based on current torque master slave control method. The imbalance of the multiple pinions driving in cutter head driving system of tunneling boring machine can be greatly decreased and the load-sharing coefficients can be reduced to 1.051 by using the loop coupling control method. The proposed research provides an effective solution to the imbalance of torque distribution and synchronous control method for multiple pinions driving of TBM. 展开更多
关键词 load-sharing characteristic tunneling boring machine(TBM) multiple pinions driving nonlinear dynamic characteristic
下载PDF
Studies on the evolution process of rockbursts in deep tunnels 被引量:11
12
作者 Xiating Feng Bingrui Chen +9 位作者 Shaojun Li Chuanqing Zhang Yaxun Xiao Guangliang Feng Hui Zhou Shili Qiu Zhouneng Zhao Yang Yu Dongfang Chen Huajun Ming 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2012年第4期289-295,共7页
This paper focuses on the evolution processes of different types of rockbursts occurring in deep tunnels. A series of laboratory tests and in-situ monitoring in deep tunnels excavated by tunnel boring machine (TBM) ... This paper focuses on the evolution processes of different types of rockbursts occurring in deep tunnels. A series of laboratory tests and in-situ monitoring in deep tunnels excavated by tunnel boring machine (TBM) and drill-and-blast (D&B) method have been conducted to understand the mechanisms and processes of the evolution of different types of rockbursts, including strain rockburst, strain-structure slip rockburst, immediate rockburst and time-delayed rockburst. Three different risk assessment methods are proposed to evaluate the intensity and potential failure depth of rockbursts. These methods can be applied before excavation and the results can be updated according to the real-time information during excavation. Two micro-seismicity based real-time warning systems have been established for predicting various intensities ofrockbursts, such as slight, moderate, intensive and extremely intensive rockbursts. Meanwhile, the probability and intensity of the rockburst are also given. The strategy for excavation and support design has been suggested for various intensities of rockbursts before excavation. The strategy for dynamic control of the rockburst evolution process is also proposed according to the monitoring results. The methodology has been successfully applied to rockburst risk reduction for deep tunnels at Jinping II hydropower project. The results have illustrated the applicability of the proposed methodology and techniques concerning rockbursts. 展开更多
关键词 ROCKBURST risk assessment tunnel boring machine (TBM) drill-and-blast (D&B) method
下载PDF
Performance characteristics of tunnel boring machine in basalt and pyroclastic rocks of Deccan traps–A case study 被引量:5
13
作者 Prasnna Jain A.K.Naithan T.N.Singh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第1期36-47,共12页
A12.24km long tunnel between Maroshi and Ruparel College is being excavated by tunnel boring machine(TBM)to improve the water supply system of Greater Mumbai,India.In this paper,attempt has been made to establish the ... A12.24km long tunnel between Maroshi and Ruparel College is being excavated by tunnel boring machine(TBM)to improve the water supply system of Greater Mumbai,India.In this paper,attempt has been made to establish the relationship between various litho-units of Deccan traps,stability of tunnel and TBM performances during the construction of5.83km long tunnel between Maroshi and Vakola.The Maroshi–Vakola tunnel passes under the Mumbai Airport and crosses both runways with an overburden cover of around70m.The tunneling work was carried out without disturbance to the ground.The rock types encountered during excavation arefine compacted basalt,porphyritic basalt,amygdaloidal basalt pyroclastic rocks with layers of red boles and intertrappean beds consisting of various types of shales Relations between rock mass properties,physico-mechanical properties,TBM specifications and the cor responding TBM performance were established.A number of support systems installed in the tunne during excavation were also discussed.The aim of this paper is to establish,with appropriate accuracy the nature of subsurface rock mass condition and to study how it will react to or behave during under ground excavation by TBM.The experiences gained from this project will increase the ability to cope with unexpected ground conditions during tunneling using TBM. 展开更多
关键词 tunnelING Open-type tunnel boring machine(TBM) Rock mass classification Ground supporting Deccan trap
下载PDF
A real-time prediction method for tunnel boring machine cutter-head torque using bidirectional long short-term memory networks optimized by multi-algorithm 被引量:4
14
作者 Xing Huang Quantai Zhang +4 位作者 Quansheng Liu Xuewei Liu Bin Liu Junjie Wang Xin Yin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期798-812,共15页
Based on data from the Jilin Water Diversion Tunnels from the Songhua River(China),an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine(TBM)cutter-head torque is presented... Based on data from the Jilin Water Diversion Tunnels from the Songhua River(China),an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine(TBM)cutter-head torque is presented.Firstly,a function excluding invalid and abnormal data is established to distinguish TBM operating state,and a feature selection method based on the SelectKBest algorithm is proposed.Accordingly,ten features that are most closely related to the cutter-head torque are selected as input variables,which,in descending order of influence,include the sum of motor torque,cutter-head power,sum of motor power,sum of motor current,advance rate,cutter-head pressure,total thrust force,penetration rate,cutter-head rotational velocity,and field penetration index.Secondly,a real-time cutterhead torque prediction model’s structure is developed,based on the bidirectional long short-term memory(BLSTM)network integrating the dropout algorithm to prevent overfitting.Then,an algorithm to optimize hyperparameters of model based on Bayesian and cross-validation is proposed.Early stopping and checkpoint algorithms are integrated to optimize the training process.Finally,a BLSTMbased real-time cutter-head torque prediction model is developed,which fully utilizes the previous time-series tunneling information.The mean absolute percentage error(MAPE)of the model in the verification section is 7.3%,implying that the presented model is suitable for real-time cutter-head torque prediction.Furthermore,an incremental learning method based on the above base model is introduced to improve the adaptability of the model during the TBM tunneling.Comparison of the prediction performance between the base and incremental learning models in the same tunneling section shows that:(1)the MAPE of the predicted results of the BLSTM-based real-time cutter-head torque prediction model remains below 10%,and both the coefficient of determination(R^(2))and correlation coefficient(r)between measured and predicted values exceed 0.95;and(2)the incremental learning method is suitable for realtime cutter-head torque prediction and can effectively improve the prediction accuracy and generalization capacity of the model during the excavation process. 展开更多
关键词 tunnel boring machine(TBM) Real-time cutter-head torque prediction Bidirectional long short-term memory (BLSTM) Bayesian optimization Multi-algorithm fusion optimization Incremental learning
下载PDF
Hybrid ensemble soft computing approach for predicting penetration rate of tunnel boring machine in a rock environment 被引量:3
15
作者 Abidhan Bardhan Navid Kardani +3 位作者 Anasua GuhaRay Avijit Burman Pijush Samui Yanmei Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1398-1412,共15页
This study implements a hybrid ensemble machine learning method for forecasting the rate of penetration(ROP) of tunnel boring machine(TBM),which is becoming a prerequisite for reliable cost assessment and project sche... This study implements a hybrid ensemble machine learning method for forecasting the rate of penetration(ROP) of tunnel boring machine(TBM),which is becoming a prerequisite for reliable cost assessment and project scheduling in tunnelling and underground projects in a rock environment.For this purpose,a sum of 185 datasets was collected from the literature and used to predict the ROP of TBM.Initially,the main dataset was utilised to construct and validate four conventional soft computing(CSC)models,i.e.minimax probability machine regression,relevance vector machine,extreme learning machine,and functional network.Consequently,the estimated outputs of CSC models were united and trained using an artificial neural network(ANN) to construct a hybrid ensemble model(HENSM).The outcomes of the proposed HENSM are superior to other CSC models employed in this study.Based on the experimental results(training RMSE=0.0283 and testing RMSE=0.0418),the newly proposed HENSM is potential to assist engineers in predicting ROP of TBM in the design phase of tunnelling and underground projects. 展开更多
关键词 tunnel boring machine(TBM) Rate of penetration(ROP) Artificial intelligence Artificial neural network(ANN) Ensemble modelling
下载PDF
Reducing risk in long deep tunnels by using TBM and drill-and-blast methods in the same project-the hybrid solution 被引量:2
16
作者 Nick Barton 《Journal of Rock Mechanics and Geotechnical Engineering》 2012年第2期115-126,共12页
There are many examples of TBM tunnels through mountains, or in mountainous terrain, which have suffered the ultimate fate of abandonment, due to insufficient pre-investigation. Depth-of-drilling limitations are inevi... There are many examples of TBM tunnels through mountains, or in mountainous terrain, which have suffered the ultimate fate of abandonment, due to insufficient pre-investigation. Depth-of-drilling limitations are inevitable when depths approach or even exceed l or 2 km. Uncertainties about the geology, hydro-geology, rock stresses and rock strengths go hand-in-hand with deep or ultra-deep tunnels. Unfortunately, unexpected conditions tend to have a much bigger impact on TBM projects than on drill-and-blast projects. There are two obvious reasons. Firstly the circular excavation maximizes the tangential stress, making the relation to rock strength a higher source of potential risk. Secondly, the TBM may have been progressing fast enough to make probe-drilling seem to be unnecessary. If the stress-to-strength ratio becomes too high, or if faulted rock with high water pressure is unexpectedly encountered, the "unexpected events" may have a remarkable delaying effect on TBM. A simple equation explains this phenomenon, via the adverse local Q-value that links directly to utilization. One may witness dramatic reductions in utilization, meaning ultra-steep deceleration-of-the-TBM gradients in a log-log plot of advance rate versus time. Some delays can be avoided or reduced with new TBM designs, where belief in the need for probe-drilling and sometimes also pre-injection, have been fully appreciated. Drill-and-blast tunneling, inevitably involving numerous "probe-holes" prior to each advance, should be used instead, if investigations have been too limited. TBM should be used where there is lower cover and where more is known about the rock and structural conditions. The advantages of the superior speed of TBM may then be fully realized. Choosing TBM because a tunnel is very long increases risk due to the law of deceleration with increased length, especially if there is limited pre-investigation because of tunnel depth. 展开更多
关键词 tunnel boring machine (TBM) rock strength deep tunnels tangential stress pre-injection Q-values UTILIZATION risk
下载PDF
Tunnel boring machine vibration-based deep learning for the ground identification of working faces 被引量:1
17
作者 Mengbo Liu Shaoming Liao +3 位作者 Yifeng Yang Yanqing Men Junzuo He Yongliang Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1340-1357,共18页
Tunnel boring machine(TBM) vibration induced by cutting complex ground contains essential information that can help engineers evaluate the interaction between a cutterhead and the ground itself.In this study,deep recu... Tunnel boring machine(TBM) vibration induced by cutting complex ground contains essential information that can help engineers evaluate the interaction between a cutterhead and the ground itself.In this study,deep recurrent neural networks(RNNs) and convolutional neural networks(CNNs) were used for vibration-based working face ground identification.First,field monitoring was conducted to obtain the TBM vibration data when tunneling in changing geological conditions,including mixed-face,homogeneous,and transmission ground.Next,RNNs and CNNs were utilized to develop vibration-based prediction models,which were then validated using the testing dataset.The accuracy of the long short-term memory(LSTM) and bidirectional LSTM(Bi-LSTM) models was approximately 70% with raw data;however,with instantaneous frequency transmission,the accuracy increased to approximately 80%.Two types of deep CNNs,GoogLeNet and ResNet,were trained and tested with time-frequency scalar diagrams from continuous wavelet transformation.The CNN models,with an accuracy greater than 96%,performed significantly better than the RNN models.The ResNet-18,with an accuracy of 98.28%,performed the best.When the sample length was set as the cutterhead rotation period,the deep CNN and RNN models achieved the highest accuracy while the proposed deep CNN model simultaneously achieved high prediction accuracy and feedback efficiency.The proposed model could promptly identify the ground conditions at the working face without stopping the normal tunneling process,and the TBM working parameters could be adjusted and optimized in a timely manner based on the predicted results. 展开更多
关键词 Deep learning Transfer learning Convolutional neural network(CNN) Recurrent neural network(RNN) Ground detection tunnel boring machine(TBM)vibration Mixed-face ground
下载PDF
Energy release process of surrounding rocks of deep tunnels with two excavation methods 被引量:3
18
作者 Peng Yan Wenbo Lu +3 位作者 Ming Chen Zhigang Shan Xiangrong Chen Yong Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 2012年第2期160-167,共8页
Numerical analysis of the total energy release of surrounding rocks excavated by drill-and-blast (D&B) method and tunnel boring machine (TBM) method is presented in the paper. The stability of deep tunnels during... Numerical analysis of the total energy release of surrounding rocks excavated by drill-and-blast (D&B) method and tunnel boring machine (TBM) method is presented in the paper. The stability of deep tunnels during excavation in terms of energy release is also discussed. The simulation results reveal that energy release during blasting excavation is a dynamic process. An intense dynamic effect is captured at large excavation footage. The magnitude of energy release during full-face excavation with D&B method is higher than that with TBM method under the same conditions. The energy release rate (ERR) and speed (ERS) also have similar trends. Therefore, the rockbursts in tunnels excavated by D&B method are frequently encountered and more intensive than those by TBM method. Since the space after tunnel face is occupied by the backup system of TBM, prevention and control of rockbursts are more difficult. Thus, rockbursts in tunnels excavated by TBM method with the same intensity are more harmful than those in tunnels by D&B method. Reducing tunneling rate of TBM seems to be a good means to decrease ERR and risk of rockburst. The rockbursts observed during excavation of headrace tunnels at Jinping II hydropower station in West China confirm the analytical results obtained in this paper. 展开更多
关键词 drill-and-blast (D&B) excavation tunnel boring machine (TBM) excavation energy release rockbursts
下载PDF
The Time and Cost Prediction of Tunnel Boring Machine in Tunnelling
19
作者 WU Shijing QIAN Bo GONG Zhibo 《Wuhan University Journal of Natural Sciences》 CAS 2006年第2期385-388,共4页
Making use of microsoft visual studio. net platform, the assistant decision-making system of tunnel boring machine in tunnelling has been built to predict the time and cost. Computation methods of the performance para... Making use of microsoft visual studio. net platform, the assistant decision-making system of tunnel boring machine in tunnelling has been built to predict the time and cost. Computation methods of the performance parameters have been discussed. New time and cost prediction models have been depicted. The multivariate linear regression has been used to make the parameters more precise, which are the key factor to affect the prediction near to the reality. 展开更多
关键词 tunnel boring machine time prediction costprediction assistant decision-making multivariate linear regression
下载PDF
An evolutionary adaptive neuro-fuzzy inference system for estimating field penetration index of tunnel boring machine in rock mass
20
作者 Maryam Parsajoo Ahmed Salih Mohammed +2 位作者 Saffet Yagiz Danial Jahed Armaghani Manoj Khandelwal 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1290-1299,共10页
Field penetration index(FPI) is one of the representative key parameters to examine the tunnel boring machine(TBM) performance.Lack of accurate FPI prediction can be responsible for numerous disastrous incidents assoc... Field penetration index(FPI) is one of the representative key parameters to examine the tunnel boring machine(TBM) performance.Lack of accurate FPI prediction can be responsible for numerous disastrous incidents associated with rock mechanics and engineering.This study aims to predict TBM performance(i.e.FPI) by an efficient and improved adaptive neuro-fuzzy inference system(ANFIS) model.This was done using an evolutionary algorithm,i.e.artificial bee colony(ABC) algorithm mixed with the ANFIS model.The role of ABC algorithm in this system is to find the optimum membership functions(MFs) of ANFIS model to achieve a higher degree of accuracy.The procedure and modeling were conducted on a tunnelling database comprising of more than 150 data samples where brittleness index(BI),fracture spacing,α angle between the plane of weakness and the TBM driven direction,and field single cutter load were assigned as model inputs to approximate FPI values.According to the results obtained by performance indices,the proposed ANFISABC model was able to receive the highest accuracy level in predicting FPI values compared with ANFIS model.In terms of coefficient of determination(R^(2)),the values of 0.951 and 0.901 were obtained for training and testing stages of the proposed ANFISABC model,respectively,which confirm its power and capability in solving TBM performance problem.The proposed model can be used in the other areas of rock mechanics and underground space technologies with similar conditions. 展开更多
关键词 tunnel boring machine(TBM) Field penetration index(FPI) Neuro-fuzzy technique Evolutionary computation Artificial bee colony(ABC)
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部