The integrated structure parts are widely used in aircraft. The distortion caused by residual stresses in thick pre-stretched aluminum plates during machining integrated parts is a common and serious problem. To predi...The integrated structure parts are widely used in aircraft. The distortion caused by residual stresses in thick pre-stretched aluminum plates during machining integrated parts is a common and serious problem. To predict and control the machining distortion, the residual stress distribution in the thick plate must be measured firstly. The modified removal method for measuring residual stress in thick pre-stretched aluminum plates is proposed and the stress-strain relation matrix is deduced by elasticity theory. The residual stress distribution in specimen of 7050T7451 plate is measured by using the method, and measurement results are analyzed and compared with data obtained by other methods. The method is effective to measure the residual stress.展开更多
The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this p...The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this purpose, three-dimensional thermo-elastic-plastic finite element method computations are performed with varying plate thickness and weld bead length (leg length) in welded plate panels, the latter being associated with weld heat input. The finite element models are verified by a comparison with experimental database which was obtained by the authors in separate studies with full scale measurements. It is concluded that the nonlinear finite element method models developed in the present paper are very accurate in terms of predicting the weld-induced initial imperfections of steel stiffened plate structures. Details of the numerical computations together with test database are documented.展开更多
Due to local uneven heating during the welding process,the residual stress of the structure after welding affects the reliability of it.In order to ensure the reliability,it is of great significance to test the residu...Due to local uneven heating during the welding process,the residual stress of the structure after welding affects the reliability of it.In order to ensure the reliability,it is of great significance to test the residual stress distribution of the welded joint.It has always been the focus to find a simple and feasible method for residual stress testing to quickly and accurately obtain the residual stress distribution of welded joints.The mechanical measurement method has high measurement accuracy,convenient and easy operation,but it will cause certain damage to the components.Physical measurement method can avoid damage to components,but its test cost is usually high,and its measurement accuracy can also be affected by the material microstructure characteristics of welded components.Based on the advantages and disadvantages of these two residual stress test methods,a modal test method is proposed.This method is a non-destructive measurement method.Based on the mathematical relationship between the residual stress of the welded structure and the natural frequency(mathematical model),the natural frequency is measured through the modal test to calculate the residual stress quickly.However,it is difficult to establish a mathematical model with this method,and it is not suitable for realization.展开更多
The effect of vibratory stress relief (VSR) is usually evaluated with the indirect method of observing the change of amplitude frequency response characteristics of structures. A new kind of evaluating method of VSR...The effect of vibratory stress relief (VSR) is usually evaluated with the indirect method of observing the change of amplitude frequency response characteristics of structures. A new kind of evaluating method of VSR based on the ultrasonic time-of-arrival method (UTM), which can obtain the residual stress directly through measuring the propagation time of ultrasonic wave in the material, is presented. At first, the principle of the measuring method of residual stress based on UTM is analyzed. Then the measuring system of the method is described, which is in virtue of ultrasonic flaw detector and high-sampling-rate digital oscillograph. And a set of calibration system that contains a piece of standard specimen is also introduced. Experimental results prove the relation between the residual stress and the propagation time of ultrasonic in workpieces. Finally, the measuring and calibration systems are applied in evaluating the effect of VSR. The final test results show that the method is effective.展开更多
Metal additive manufacturing(MAM)is an emerging and disruptive technology that builds three-dimensional(3D)components by adding layer-upon-layer of metallic materials.The complex cyclic thermal history and highly loca...Metal additive manufacturing(MAM)is an emerging and disruptive technology that builds three-dimensional(3D)components by adding layer-upon-layer of metallic materials.The complex cyclic thermal history and highly localized energy can produce large temperature gradients,which will,in turn,lead to compressive and tensile stress during the MAM process and eventually result in residual stress.Being an issue of great concern,residual stress,which can cause distortion,delamination,cracking,etc.,is considered a key mechanical quantity that affects the manufacturing quality and service performance of MAM parts.In this review paper,the ongoing work in the field of residual stress determination and control for MAM is described with a particular emphasis on the experimental measurement/control methods and numerical models.We also provide insight on what still requires to be achieved and the research opportunities and challenges.展开更多
For researching the residual stress distribution characteristics of the different large thickness titanium alloy joints by electron beam welding,under heat treatment or non-heat treatment conditions,the changes in res...For researching the residual stress distribution characteristics of the different large thickness titanium alloy joints by electron beam welding,under heat treatment or non-heat treatment conditions,the changes in residual stress distribution characteristics of electron beam welding joints,which thickness is 50 mm,were measured using blind-hole method with local layer-by-layer removal.Effect of post-welding heat treatment on the residual stress distribution also studied.The results show that blind-hole method with local layer-by-layer removal is suitable to measure residual stresses in thick plate,and good to reflect the welded residual stress distribution of large gradient.Residual stress of the test samples in the weld and heat affected zone has high stress level,and internal stress dramatic changes with thickness in this areas.After heat treatment,the samples' stress distributions were significantly reduced.The samples' transverse and longitudinal residual stress are basically the same.Homogenization is obvious.展开更多
文摘The integrated structure parts are widely used in aircraft. The distortion caused by residual stresses in thick pre-stretched aluminum plates during machining integrated parts is a common and serious problem. To predict and control the machining distortion, the residual stress distribution in the thick plate must be measured firstly. The modified removal method for measuring residual stress in thick pre-stretched aluminum plates is proposed and the stress-strain relation matrix is deduced by elasticity theory. The residual stress distribution in specimen of 7050T7451 plate is measured by using the method, and measurement results are analyzed and compared with data obtained by other methods. The method is effective to measure the residual stress.
文摘The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this purpose, three-dimensional thermo-elastic-plastic finite element method computations are performed with varying plate thickness and weld bead length (leg length) in welded plate panels, the latter being associated with weld heat input. The finite element models are verified by a comparison with experimental database which was obtained by the authors in separate studies with full scale measurements. It is concluded that the nonlinear finite element method models developed in the present paper are very accurate in terms of predicting the weld-induced initial imperfections of steel stiffened plate structures. Details of the numerical computations together with test database are documented.
基金Project was supported by the National Natural Science Foundation of China(Grant No.52165034)Science and Technology Programs of Inner Mongolia(Grant No.2020GG0301)+1 种基金Natural Science Foundation of Inner Mongolia Autonomous Region(Grant No.2019MS05061)Scientific Research Projects of Higher Education of Inner Mongolia Autonomous Region Institutions(Grant No.NJZY20066).
文摘Due to local uneven heating during the welding process,the residual stress of the structure after welding affects the reliability of it.In order to ensure the reliability,it is of great significance to test the residual stress distribution of the welded joint.It has always been the focus to find a simple and feasible method for residual stress testing to quickly and accurately obtain the residual stress distribution of welded joints.The mechanical measurement method has high measurement accuracy,convenient and easy operation,but it will cause certain damage to the components.Physical measurement method can avoid damage to components,but its test cost is usually high,and its measurement accuracy can also be affected by the material microstructure characteristics of welded components.Based on the advantages and disadvantages of these two residual stress test methods,a modal test method is proposed.This method is a non-destructive measurement method.Based on the mathematical relationship between the residual stress of the welded structure and the natural frequency(mathematical model),the natural frequency is measured through the modal test to calculate the residual stress quickly.However,it is difficult to establish a mathematical model with this method,and it is not suitable for realization.
基金This project is supported by National Natural Science Foundation of China(No.50305036).
文摘The effect of vibratory stress relief (VSR) is usually evaluated with the indirect method of observing the change of amplitude frequency response characteristics of structures. A new kind of evaluating method of VSR based on the ultrasonic time-of-arrival method (UTM), which can obtain the residual stress directly through measuring the propagation time of ultrasonic wave in the material, is presented. At first, the principle of the measuring method of residual stress based on UTM is analyzed. Then the measuring system of the method is described, which is in virtue of ultrasonic flaw detector and high-sampling-rate digital oscillograph. And a set of calibration system that contains a piece of standard specimen is also introduced. Experimental results prove the relation between the residual stress and the propagation time of ultrasonic in workpieces. Finally, the measuring and calibration systems are applied in evaluating the effect of VSR. The final test results show that the method is effective.
基金financially supported by the National Natural Science Foundation of China(12032013,12272131)the Provincial Natural Science Foundation of Hunan(2022JJ40029)the Scientific Research Foundation of Hunan Provincial Education Department(21C0087)。
文摘Metal additive manufacturing(MAM)is an emerging and disruptive technology that builds three-dimensional(3D)components by adding layer-upon-layer of metallic materials.The complex cyclic thermal history and highly localized energy can produce large temperature gradients,which will,in turn,lead to compressive and tensile stress during the MAM process and eventually result in residual stress.Being an issue of great concern,residual stress,which can cause distortion,delamination,cracking,etc.,is considered a key mechanical quantity that affects the manufacturing quality and service performance of MAM parts.In this review paper,the ongoing work in the field of residual stress determination and control for MAM is described with a particular emphasis on the experimental measurement/control methods and numerical models.We also provide insight on what still requires to be achieved and the research opportunities and challenges.
文摘For researching the residual stress distribution characteristics of the different large thickness titanium alloy joints by electron beam welding,under heat treatment or non-heat treatment conditions,the changes in residual stress distribution characteristics of electron beam welding joints,which thickness is 50 mm,were measured using blind-hole method with local layer-by-layer removal.Effect of post-welding heat treatment on the residual stress distribution also studied.The results show that blind-hole method with local layer-by-layer removal is suitable to measure residual stresses in thick plate,and good to reflect the welded residual stress distribution of large gradient.Residual stress of the test samples in the weld and heat affected zone has high stress level,and internal stress dramatic changes with thickness in this areas.After heat treatment,the samples' stress distributions were significantly reduced.The samples' transverse and longitudinal residual stress are basically the same.Homogenization is obvious.