In this paper, by means of the definition of Borel exceptional value method, another exceptional value of meromorphic function which is a T exceptional value is defined by linking the concept of T direction. And we co...In this paper, by means of the definition of Borel exceptional value method, another exceptional value of meromorphic function which is a T exceptional value is defined by linking the concept of T direction. And we construct a meromorphic function with zero as Borel exceptional value, but not as T exceptional value; and another meromorphic function with zero as T exceptional value, but not as Borel exceptional value.展开更多
We consider the existence, the growth, poles, zeros, fixed points and the Borel exceptional value of solutions for the following difference equations relating to Gamma function y(z + 1) -y(z) = R(z) and y(z ...We consider the existence, the growth, poles, zeros, fixed points and the Borel exceptional value of solutions for the following difference equations relating to Gamma function y(z + 1) -y(z) = R(z) and y(z + 1) = P (z)y(z).展开更多
In this paper, we present the properties on zeros, fixed points, poles, Borel exceptional value of finite order transcendental meromorphic solutions of complex difference equation of Malmquist typewhere n(∈ N) 〉 2...In this paper, we present the properties on zeros, fixed points, poles, Borel exceptional value of finite order transcendental meromorphic solutions of complex difference equation of Malmquist typewhere n(∈ N) 〉 2, P(f(z)) and Q(f(z)) are relatively prime polynomials in f(z) with rational coefficients a8 (s = 0, 1,…,p) and bt (t = 0, 1,… ,q) such that aoapbq 7≠ O, and also consider the existence and the forms on rational solutions of this type of difference equations. Some examples are also listed to show that the assumptions of theorems, in certain senses, are the best possible.展开更多
In this paper, meromorphic solutions of Riccati and linear difference equations are investigated. The growth and Borel exceptional values of these solutions are discussed, and the growth, zeros and poles of difference...In this paper, meromorphic solutions of Riccati and linear difference equations are investigated. The growth and Borel exceptional values of these solutions are discussed, and the growth, zeros and poles of differences of these solutions are also investigated. Furthermore, several examples are given showing that our results are best possible in certain senses.展开更多
In this article, for a transcendental entire function f(z) of finite order which has a finite Borel exceptional value a, we utilize properties of complex difference equations to prove the difference counterpart of B...In this article, for a transcendental entire function f(z) of finite order which has a finite Borel exceptional value a, we utilize properties of complex difference equations to prove the difference counterpart of Bruck's conjecture, that is, if △f(z) = f(z + η) - f(z) and f(z) share one value a (≠α) CM, where η ∈ C is a constant such that f(z +η) ≠ f(z),then△f(z)-a/f(z)-a=a/a-α.展开更多
In this paper,suppose that a,c∈C{0},c_(j)∈C(j=1,2,···,n) are not all zeros and n≥2,and f (z) is a finite order transcendental entire function with Borel finite exceptional value or with infinitely ma...In this paper,suppose that a,c∈C{0},c_(j)∈C(j=1,2,···,n) are not all zeros and n≥2,and f (z) is a finite order transcendental entire function with Borel finite exceptional value or with infinitely many multiple zeros,the zero distribution of difference polynomials of f (z+c)-af^(n)(z) and f (z)f (z+c_1)···f (z+c_n) are investigated.A number of examples are also presented to show that our results are best possible in a certain sense.展开更多
In this paper, we mainly study zeros and poles of the forward differences △nf(z), where f(z) is a finite order meromorphic function with two Borel exceptional values.
基金supported by the Natural Science Foundation of China(10161006)
文摘In this paper, by means of the definition of Borel exceptional value method, another exceptional value of meromorphic function which is a T exceptional value is defined by linking the concept of T direction. And we construct a meromorphic function with zero as Borel exceptional value, but not as T exceptional value; and another meromorphic function with zero as T exceptional value, but not as Borel exceptional value.
基金supported by the National Natural Science Foundation of China (10871076 11026096)
文摘We consider the existence, the growth, poles, zeros, fixed points and the Borel exceptional value of solutions for the following difference equations relating to Gamma function y(z + 1) -y(z) = R(z) and y(z + 1) = P (z)y(z).
基金supported by the National Natural Science Foundation of China(11171119)
文摘In this paper, we present the properties on zeros, fixed points, poles, Borel exceptional value of finite order transcendental meromorphic solutions of complex difference equation of Malmquist typewhere n(∈ N) 〉 2, P(f(z)) and Q(f(z)) are relatively prime polynomials in f(z) with rational coefficients a8 (s = 0, 1,…,p) and bt (t = 0, 1,… ,q) such that aoapbq 7≠ O, and also consider the existence and the forms on rational solutions of this type of difference equations. Some examples are also listed to show that the assumptions of theorems, in certain senses, are the best possible.
基金supported by National Natural Science Foundation of China(1122609011171119)Guangdong Natural Science Foundation(S2012040006865)
文摘In this paper, meromorphic solutions of Riccati and linear difference equations are investigated. The growth and Borel exceptional values of these solutions are discussed, and the growth, zeros and poles of differences of these solutions are also investigated. Furthermore, several examples are given showing that our results are best possible in certain senses.
基金supported by the National Natural Science Foundation of China(11171119)
文摘In this article, for a transcendental entire function f(z) of finite order which has a finite Borel exceptional value a, we utilize properties of complex difference equations to prove the difference counterpart of Bruck's conjecture, that is, if △f(z) = f(z + η) - f(z) and f(z) share one value a (≠α) CM, where η ∈ C is a constant such that f(z +η) ≠ f(z),then△f(z)-a/f(z)-a=a/a-α.
基金Supported by the National Natural Science Foundation of China (11926201)Natural Science Foundation of Guangdong Province (2018A030313508)。
文摘In this paper,suppose that a,c∈C{0},c_(j)∈C(j=1,2,···,n) are not all zeros and n≥2,and f (z) is a finite order transcendental entire function with Borel finite exceptional value or with infinitely many multiple zeros,the zero distribution of difference polynomials of f (z+c)-af^(n)(z) and f (z)f (z+c_1)···f (z+c_n) are investigated.A number of examples are also presented to show that our results are best possible in a certain sense.
基金Supported by National Natural Science Foundation of China(Grant No.11171119)
文摘In this paper, we mainly study zeros and poles of the forward differences △nf(z), where f(z) is a finite order meromorphic function with two Borel exceptional values.